Skip to main content
Log in

Effects of vertical wind shear on intensity and rainfall asymmetries of strong Tropical Storm Bilis (2006)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT wind fields, 850- and 200-hPa winds of the NCEP-NCAR reanalysis, precipitation data at 5-min intervals from automatic weather stations over mainland China, and the best track data of TS Bilis (2006). The results show that the simultaneous and 6-hour-lagged correlation coefficients between VWS and storm intensity (the minimum central sea level pressure) are 0.59145 and 0.57438 (P < 0.01), respectively. The averaged VWS was found to be about 11 m s−1 and thus suppressed the intensification of Bilis (2006). Distribution of precipitation in Bilis (2006) was highly asymmetric. The azimuthally-averaged rainfall rate in the partial eyewall, however, was smaller than that in a major outer rainband. As the storm intensified, the major rainband showed an unusual outward propagation. The VWS had a great impact on the asymmetric distribution of precipitation. Consistent with previous modeling studies, heavy rainfall generally occurred downshear to downshear-left of the VWS vector both near and outside the eyewall, showing a strong wavenumber-one asymmetry, which was amplified as the VWS increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703–724.

    Article  Google Scholar 

  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312.

    Article  Google Scholar 

  • Blackwell, K. G., 2000: The evolution of hurricane Danny (1997) at landfall: Doppler -observed eyewall replacement, vortex contraction/Intensification, and low-level wind maxima. Mon. Wea. Rev., 128, 4002–4016.

    Article  Google Scholar 

  • Burpee, R. W., and M. L. Black, 1989: Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117, 2204–2218.

    Article  Google Scholar 

  • Cecil, D. J., 2007: Satellite-derived rain rates in vertically sheared tropical cyclones. Geophys. Res. Lett., 34, L02811, doi: 10.1029/2006GL027942.

    Article  Google Scholar 

  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208.

    Article  Google Scholar 

  • Chen, L.-S., X.-D. Xu, Z.-X. Luo, and L.-Z. Wang, 2002: Introduction to Tropical Cyclone Dynamics. Chinese Meteorological Press, 317pp.

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123.

    Article  Google Scholar 

  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376.

    Article  Google Scholar 

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2087.

    Article  Google Scholar 

  • DeMaria, M., and J. Kaplan, 1994: Statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220.

    Article  Google Scholar 

  • DeMaria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern north Pacific basins. Wea. Forecasting, 14, 326–337.

    Article  Google Scholar 

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone, Part I: Storm structure. Mon. Wea. Rev., 105, 1119–1125.

    Article  Google Scholar 

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061.

    Article  Google Scholar 

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on hurricane intensity and structure. Mon. Wea. Rev., 129, 2249–2269.

    Article  Google Scholar 

  • Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Proceedings of the 25 th Conference on Hurricanes and Tropical Meteorology, San Diego, CA. 172–173.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Hebert, P. J., 1976: Intensification criteria for tropical depressions of the western hurricane-Inez (1966). Mon. Wea. Rev., 104, 418–442.

    Article  Google Scholar 

  • Jones, S. C., 1995: The evolution of vortices in vertical shear, I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851.

    Article  Google Scholar 

  • Jones, S. C., 2000: The evolution of vortices in vertical shear, II: initially baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 3161–3185.

    Article  Google Scholar 

  • Jorgensen, D. P., 1984: Mesoscale and convective scale characteristics of mature hurricanes, Part I: General observations by research aircraft. J. Atmos. Sci., 41, 1268–1285.

    Article  Google Scholar 

  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the Western North Pacific. Wea. Forecasting, 20, 688–699.

    Article  Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1996: The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809–817.

    Article  Google Scholar 

  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 1645–1660.

    Article  Google Scholar 

  • Marks, F. D., Jr, 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909–930.

    Article  Google Scholar 

  • McAdie, C. J., and M. B. Lawrence, 2000: Improvements in tropical cyclone track forecasting in the Atlantic Basin, 1970–98. Bull. Amer. Meteor. Soc., 81, 989–998.

    Article  Google Scholar 

  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678–1687.

    Article  Google Scholar 

  • Molinari, J., D. Vollaro, and S. Sbubis, 2000: Origins and mechanism of Eastern Pacific tropical cyclogenesis: A case study. Mon. Wea. Rev., 128, 125–139.

    Article  Google Scholar 

  • Paterson, L. A., B. N. Hanstrum, and N. E. Davidson, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 3644–3660.

    Article  Google Scholar 

  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low wave structure and evolution of the hurricane inner core observed by airborne and dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.

    Article  Google Scholar 

  • Rodgers, E. B., and E. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506–521.

    Article  Google Scholar 

  • Rogers, R., S. S. Chen, and J. Tenerelli, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599.

    Article  Google Scholar 

  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332.

    Article  Google Scholar 

  • Wang, Y., and C.-C., Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meter. Atmos. Phys., 87, 257–278.

    Article  Google Scholar 

  • Wang, Y., M. T. Montgomery, and B. Wang, 2004: How much vertical shear can a tropical cyclone resist? Bull. Amer. Meteor. Soc., 85, 661–662.

    Google Scholar 

  • Wang, Y., 2008: Structure and formation of an annular hurricane simulated in a fully-compressible, nonhydrostatic model —TCM4. J. Atmos. Sci., 65, 1505–1527.

    Article  Google Scholar 

  • Weber, H. C., and R. K. Smith, 1995: Data sparsity and the tropical-cyclone analysis and prediction problem: Some simulation experiments with a barotropic numerical model. Quart. J. Roy. Meteor. Soc., 121, 631–654.

    Article  Google Scholar 

  • William, M. F., and A. R., Elizabeth, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.

    Article  Google Scholar 

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.

    Article  Google Scholar 

  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211.

    Article  Google Scholar 

  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859–1876.

    Article  Google Scholar 

  • Yu, J.-H., X.-D. Xu, L.-S. Chen, and Z.-X. Luo, 2003: A numerical study on vorticity propagation and changes in typhoon intensity. Acta Meteorologica Sinica, 17, 129–145.

    Google Scholar 

  • Yu, J.-H., and Y. Wang, 2009: Response of tropical cyclone potential intensity over the north Indian Ocean to global warming. Geophys. Res. Lett., 36, L03709, doi: 10.1029/2008GL036742.

    Article  Google Scholar 

  • Zeng, Z.-H., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 38–59.

    Article  Google Scholar 

  • Zeng, Z.-H., L.-S. Chen, and Y. Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the North Atlantic. Mon. Wea. Rev., 136, 3307–3322.

    Article  Google Scholar 

  • Zehr, R. M., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhemin Tan  (谈哲敏).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Tan, Z. & Wang, Y. Effects of vertical wind shear on intensity and rainfall asymmetries of strong Tropical Storm Bilis (2006). Adv. Atmos. Sci. 27, 552–561 (2010). https://doi.org/10.1007/s00376-009-9030-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-9030-6

Key words

Navigation