Skip to main content
Log in

On the Roots of (Signless) Laplacian Permanental Polynomials of Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a graph, and let Q(G) and L(G) denote the signless Laplacian matrix and the Laplacian matrix of G, respectively. The polynomials \(\phi (Q(G),x)={\textrm{per}}(xI_{n}-Q(G))\) and \(\phi (L(G),x)={\textrm{per}}(xI_{n}-L(G))\) are called signless Laplacian permanental polynomial and Laplacian permanental polynomial of G, respectively. In this paper, we investigate the properties of roots of \(\phi (Q(G),x)\). We obtain the real root distribution of \(\phi (Q(G),x)\). In particular, using the Gallai–Edmonds structure theorem, we determine the structures of graphs G whose roots of signless Laplacian permanental polynomial of G contain no positive integer p, where p is the minimum vertex degree of G. And we determine completely the graphs each of which having the multiplicity of the integer root p is equal to the deficiency of a maximum p-pendant structure of the graph. These results extend the conclusion obtained by Faria (Linear Algebra Appl 299:15–35, 1995). Furthermore, we give an algorithm to calculate the multiplicity of the root p of \(\phi (Q(G),x)\). And we also determine the relation between the multiplicity of the root p of \(\phi (Q(G),x)\) and the matching number of G. Finally, we investigate the properties of roots of Laplacian permanental polynomial of non-bipartite graphs. And some open problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No data were used to support this study.

References

  1. Bapat, R.B.: A bound for the permanent of the Laplacian matrix. Linear Algebra Appl. 74, 219–223 (1986)

    Article  MathSciNet  Google Scholar 

  2. Borowiecki, M., Jóźwiak, T.: A note on charicteristic and permanental polynomials of multigraphs. In: Borowiecki, M., Kennedy, J.W., Syslo, M.M. (eds.) Graph Theory, pp. 75–78. Springer, Berlin (1983)

    Chapter  Google Scholar 

  3. Brualdi, R.A., Goldwasser, J.L.: Permanent of the Laplacian matrix of trees and bipartite graphs. Discrete Math. 48, 1–21 (1984)

    Article  MathSciNet  Google Scholar 

  4. Cash, G.G., Gutman, I.: The Laplacian permanental polynomial: formulas and algorithms. MATCH Commun. Math. Comput. Chem. 51, 129–136 (2004)

    MathSciNet  Google Scholar 

  5. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs, 3rd ed., Johann Abrosius Barth Verlag, 1995, 1st edition: Deutscher Verlag der Wissenschaften, Berlin, 1980; Academic Press, New York (1980)

  6. Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64, 255–265 (1985)

    Article  MathSciNet  Google Scholar 

  7. Faria, I.: Multiple of integer roots of polynomials of graphs. Linear Algebra Appl. 299, 15–35 (1995)

    Article  Google Scholar 

  8. Geng, X., Hu, S., Li, S.: Further results on permanental bounds for the Laplacian matrix of trees. Linear Multilinear Algebra 58, 571–587 (2010)

    Article  MathSciNet  Google Scholar 

  9. Geng, X., Hu, S., Li, S.: Permanental bounds of the Laplacian matrix of trees with given domination number. Graphs Combin. 31, 1423–1436 (2015)

    Article  MathSciNet  Google Scholar 

  10. Goldwasser, J.L.: Permanent of the Laplacian matrix of trees with a given matching. Discrete Math. 61, 197–212 (1986)

    Article  MathSciNet  Google Scholar 

  11. Kasum, D., Trinajstić, N., Gutman, I.: Chemical graph theory. III. On the permanental polynomial. Croat. Chem. Acta 54, 321–328 (1981)

    Google Scholar 

  12. Li, W., Liu, S., Wu, T., Zhang, H.: On the permanental polynomials of graphs. In: Shi, Y., Dehmer, M., Li, X., Gutman, I. (eds.) Graph Polynomials, pp. 101–122. CRC Press, Boca Raton (2017)

    Google Scholar 

  13. Liu, S.: On the (signless) Laplacian permanental polynomials of graphs. Graph Combin. 35, 787–803 (2019)

    Article  MathSciNet  Google Scholar 

  14. Liu, X., Wu, T.: Computing the permanental polynomials of graphs. Appl. Math. Comput. 304, 103–113 (2017)

    MathSciNet  Google Scholar 

  15. Lovsz, L., Plummer, M.: Matching Theory, New York (1986)

  16. Merris, R.: The Laplacian permanental polynomial for trees. Czechoslov. Math. J. 32, 397–403 (1982)

    Article  MathSciNet  Google Scholar 

  17. Merris, R., Rebman, K.R., Watkins, W.: Permanental polynomials of graphs. Linear Algebra Appl. 38, 273–288 (1981)

    Article  MathSciNet  Google Scholar 

  18. Minc, H.: Permanents. Addison-Wesley, London (1978)

    Google Scholar 

  19. So, W., Wang, W.: Finding the least element of the ordering of graphs with respect to their matching numbers. MATCH Commun. Math. Comput. Chem. 73, 225–238 (2015)

    MathSciNet  Google Scholar 

  20. Turner, J.: Generalized matrix functions and the graph isomorphism problem. SIAM J. Appl. Math. 16, 520–526 (1968)

    Article  MathSciNet  Google Scholar 

  21. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  22. West, D.B.: Introduction to Graph Theory. Prentice Hall, Hoboken (2000)

    Google Scholar 

  23. Wu, T., So, W.: Permanental sums of graphs of extreme sizes. Discrete Math. 344, 112353 (2021)

    Article  MathSciNet  Google Scholar 

  24. Wu, T., Lai, H.: On the permanental nullity and matching number of graphs. Linear Multilinear Algebra 66, 516–524 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wu, T., Zhou, T., Lü, H.: Further results on the star degree of graphs. Appl. Math. Comput. 425, 127076 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The frist author is supported by the NSFC Grant (12261071) and the NSF of Qinghai Province Grant(2020-ZJ-920).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingzeng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The Laplacian permanental polynomials of all non-bipartite graphs with \(n(3\le n\le 5)\) vertices and their roots, for details of these graphs see the appendix in [5] (Table 1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Zeng, X. & Lü, H. On the Roots of (Signless) Laplacian Permanental Polynomials of Graphs. Graphs and Combinatorics 39, 113 (2023). https://doi.org/10.1007/s00373-023-02710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02710-3

Keywords

Navigation