Skip to main content
Log in

Minimizing Visible Edges in Polyhedra

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We prove that, given a polyhedron \({\mathcal {P}}\) in \({\mathbb {R}}^3\), every point in \({\mathbb {R}}^3\) that does not see any vertex of \({\mathcal {P}}\) must see eight or more edges of \({\mathcal {P}}\), and this bound is tight. More generally, this remains true if \({\mathcal {P}}\) is any finite arrangement of internally disjoint polygons in \({\mathbb {R}}^3\). We also prove that every point in \({\mathbb {R}}^3\) can see six or more edges of \({\mathcal {P}}\) (possibly only the endpoints of some these edges) and every point in the interior of \({\mathcal {P}}\) can see a positive portion of at least six edges of \({\mathcal {P}}\). These bounds are also tight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that this manuscript has no associated data.

References

  1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R} \)-complete. J. ACM 69(1), 1–70 (2022). https://doi.org/10.1145/3188745.3188868

    Article  MathSciNet  MATH  Google Scholar 

  2. Below, A., Brehm, U., De Loera, J.A., Richter-Gebert, J.: Minimal simplicial dissections and triangulations of convex 3-polytopes. Discrete Comput. Geom. 24(1), 35–48 (2000). https://doi.org/10.1007/s004540010058

    Article  MathSciNet  MATH  Google Scholar 

  3. Below, A., De Loera, J.A., Richter-Gebert, J.: The complexity of finding small triangulations of convex 3-polytopes. J. Algorithms 50(2), 134–167 (2004). https://doi.org/10.1016/S0196-6774(03)00092-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Benbernou, N. M., Demaine, E. D., Demaine, M. L., Kurdia, A., O’Rourke, J., Toussaint, G. T., Urrutia, J., Viglietta, G.: Edge-guarding orthogonal polyhedra. In: Proceedings of the 23rd Canadian Conference on Computational Geometry (CCCG 2011), pp. 461–466, Toronto, ON (2011). http://2011.cccg.ca/PDFschedule/papers/paper50.pdf

  5. Bezdek, A., Carrigan, B.: On nontriangulable polyhedra. Contrib. Algebra Geom. 57, 51–66 (2016). https://doi.org/10.1007/s13366-015-0248-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B.: The Art of Mathematics: Coffee Time in Memphis. Cambridge University Press, Cambridge (2006). https://doi.org/10.1017/CBO9780511816574

    Book  MATH  Google Scholar 

  7. Bonnet, É., Miltzow, T.: An approximation algorithm for the art gallery problem. In: Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017), volume 77 of LIPIcs, pp. 20:1–20:15. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.20

  8. Bygi, M.N., Daneshpajouh, S., Alipour, S., Ghodsi, M.: Weak visibility counting in simple polygons. J. Comput. Appl. Math. 288, 215–222 (2015). https://doi.org/10.1016/j.cam.2015.04.018

    Article  MathSciNet  MATH  Google Scholar 

  9. Cano, J., Tóth, C.D., Urrutia, J., Viglietta, G.: Edge guards for polyhedra in three-space. Comput. Geom. 104, 101859 (2022). https://doi.org/10.1016/j.comgeo.2022.101859

    Article  MathSciNet  MATH  Google Scholar 

  10. Chazelle, B.: Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm. SIAM J. Comput. 13(3), 488–507 (1984). https://doi.org/10.1137/0213031

    Article  MathSciNet  MATH  Google Scholar 

  11. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B 18(1), 39–41 (1975). https://doi.org/10.1016/0095-8956(75)90061-1

    Article  MathSciNet  MATH  Google Scholar 

  12. de Berg, M.: Generalized hidden surface removal. Comput. Geom. 5(5), 249–276 (1996). https://doi.org/10.1016/0925-7721(95)00008-9

    Article  MathSciNet  MATH  Google Scholar 

  13. de Berg, M., Halperin, D., Overmars, M., van Kreveld, M.: Sparse arrangements and the number of views of polyhedral scenes. Int. J. Comput. Geom. Appl. 7(03), 175–195 (1997). https://doi.org/10.1142/S0218195997000120

    Article  MathSciNet  Google Scholar 

  14. Demouth, J., Devillers, O., Everett, H., Glisse, M., Lazard, S., Seidel, R.: On the complexity of umbra and penumbra. Comput. Geom. 42(8), 758–771 (2009). https://doi.org/10.1016/j.comgeo.2008.04.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Grove, E.F., Murali, T.M., Vitter, J.S.: The object complexity model for hidden-surface removal. Int. J. Comput. Geom. Appl. 9(02), 207–217 (1999). https://doi.org/10.1142/S0218195999000145

    Article  MathSciNet  MATH  Google Scholar 

  16. Gudmundsson, J., Morin, P.: Visibility, Planar: Testing and counting. In: Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG 2010), pp. 77–86. ACM Press (2010). https://doi.org/10.1145/1810959.1810973

  17. Iwamoto, C.: Finding the minimum number of open-edge guards in an orthogonal polygon is NP-hard. IEICE Trans. Inf. Syst. 100(7), 1521–1525 (2017). https://doi.org/10.1587/transinf.2016EDL8251

    Article  Google Scholar 

  18. Iwamoto, C., Kishi, J., Morita, K.: Lower bound of face guards of polyhedral terrains. Inf. Media Technol. 7(2), 435–437 (2012). https://doi.org/10.2197/ipsjjip.20.435

    Article  Google Scholar 

  19. Iwamoto, C., Kitagaki, Y., Morita, K.: Finding the minimum number of face guards is NP-hard. IEICE Trans. Inf. Syst. 95(11), 2716–2719 (2012). https://doi.org/10.1587/transinf.e95.d.2716

    Article  Google Scholar 

  20. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4(2), 194–206 (1983). https://doi.org/10.1137/0604020

    Article  MathSciNet  MATH  Google Scholar 

  21. Kitsios, N., Makris, C., Sioutas, S., Tsakalidis, A.K., Tsaknakis, J., Vassiliadis, B.: An optimal algorithm for reporting visible rectangles. Inf. Process. Lett. 81(5), 283–288 (2002). https://doi.org/10.1016/S0020-0190(01)00228-9

    Article  MathSciNet  Google Scholar 

  22. Kokado, K., Tóth, C. D.: Nonrealizable planar and spherical occlusion diagrams. In: Abstract of the 24th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCG\(^3\) 2022), pp. 60–61 (2022)

  23. Lee, C.W., Santos, F.: Subdivisions and triangulations of polytopes. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn., pp. 415–447. Chapman and Hall/CRC, Boca Raton (2017)

    Google Scholar 

  24. Lee, D.-T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986). https://doi.org/10.1109/TIT.1986.1057165

    Article  MathSciNet  MATH  Google Scholar 

  25. Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications, Volume 25 of Algorithms and Computation in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  26. McKenna, M.: Worst-case optimal hidden-surface removal. ACM Trans. Graphics (TOG) 6(1), 19–28 (1987). https://doi.org/10.1145/27625.27627

    Article  Google Scholar 

  27. Moet, E., Knauer, C., van Kreveld, M.: Visibility maps of segments and triangles in 3D. Comput. Geom. 39(3), 163–177 (2008). https://doi.org/10.1016/j.comgeo.2006.11.001

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Rourke, J.: Art Gallery Theorems and Algorithms, Volume 3 of International Series of Monographs on Computer Science. Oxford University Press, New York (1987)

    Google Scholar 

  29. O’Rourke, J.: Visibility. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn., pp. 875–896. Chapman and Hall/CRC, Boca Raton (2017)

    Google Scholar 

  30. Ruppert, J., Seidel, R.: On the difficulty of triangulating three-dimensional nonconvex polyhedra. Discrete Comput. Geom. 7, 227–253 (1992). https://doi.org/10.1007/BF02187840

    Article  MathSciNet  MATH  Google Scholar 

  31. Schönhardt, E.: Über die Zerlegung von Dreieckspolyedern in Tetraeder. Math. Ann. 98, 309–312 (1928). https://doi.org/10.1007/BF01451597

    Article  MathSciNet  MATH  Google Scholar 

  32. Souvaine, D. L., Veroy, R., Winslow, A.: Face guards for art galleries. In: Proceedings of the XIV Spanish Meeting on Computational Geometry, pp. 39–42, Alcalá de Henares (2011)

  33. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  34. Viglietta, G.: Face-guarding polyhedra. Comput. Geom. 47(8), 833–846 (2014). https://doi.org/10.1016/j.comgeo.2014.04.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Viglietta, G.: Optimally guarding 2-reflex orthogonal polyhedra by reflex edge guards. Comput. Geom. 86, 101589 (2020). https://doi.org/10.1016/j.comgeo.2019.101589

    Article  MathSciNet  MATH  Google Scholar 

  36. Viglietta, G.: A theory of spherical diagrams. Comput. Geom. Topol. 2(2), 2:1–2:24 (2023). https://doi.org/10.57717/cgt.v2i2.30

Download references

Acknowledgements

The authors are grateful to Joseph O’Rourke for insightful comments and suggestions that considerably improved the readability of this paper.

Funding

Research by Tóth was partially supported by NSF DMS-1800734. Research by Urrutia was partially supported by PAPIIT IN105221, Programa de Apoyo a la Investigación e Innovación Tecnológica UNAM.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giovanni Viglietta.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A two-page extended abstract of this paper appeared in the Abstracts of the 23rd Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games (TJCDCGGG), pp. 70–71, Chiang Mai, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, C.D., Urrutia, J. & Viglietta, G. Minimizing Visible Edges in Polyhedra. Graphs and Combinatorics 39, 111 (2023). https://doi.org/10.1007/s00373-023-02707-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02707-y

Keywords

Mathematics Subject Classification

Navigation