Skip to main content
Log in

On a Problem by Shapozenko on Johnson Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The Johnson graph J(nm) has the m-subsets of \(\{1,2,\ldots ,n\}\) as vertices and two subsets are adjacent in the graph if they share \(m-1\) elements. Shapozenko asked about the isoperimetric function \(\mu _{n,m}(k)\) of Johnson graphs, that is, the cardinality of the smallest boundary of sets with k vertices in J(nm) for each \(1\le k\le {n\atopwithdelims ()m}\). We give an upper bound for \(\mu _{n,m}(k)\) and show that, for each given k such that the solution to the Shadow Minimization Problem in the Boolean lattice is unique, and each sufficiently large n, the given upper bound is tight. We also show that the bound is tight for the small values of \(k\le m+1\) and for all values of k when \(m=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahlswede, R., Katona, G.O.: Graphs with maximal number of adjacent pairs of edges. Acta Math. Acad. Sci. Hungar. 32, 97–120 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bashov, M.: Nonexistence of a Kruskal–Katona type theorem for double-sided shadow minimization in the Boolean cube layer. Acta Univ. Sapientiae Inform. 5, 53–62 (2014)

    Article  MATH  Google Scholar 

  3. Bey, C.: Remarks on an Edge-Isoperimetric Problem, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, vol. 4123, pp. 971–978. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  4. Bezrukov, S.L.: An isoperimetric problem for Manhattan lattices. In: Proceedings International Conference on Finite and Infinite Sets, Budapest (1990)

  5. Bezrukov, S.L.: Isoperimetric problems in discrete spaces Extremal problems for finite sets (Visegrád, 1991). Bolyai Soc. Math. Stud. 3 János Bolyai Math. Soc. Bp. 3, 59–91 (1994)

    MathSciNet  Google Scholar 

  6. Bezrukov, S.L., Leck, U.: A simple proof of the Karakhanyan–Riordan theorem on the even discrete torus. SIAM J. Discret. Math. 23, 1416–1421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezrukov, S.L., Serra, O.: A local–global principle for vertex-isoperimetric problems. Discret. Math. 257, 285–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B.: Combinatorics, Set Systems, Hypergraphs. Families of Vectors and Combinatorial Probability. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  9. Bollobás, B.: An isoperimetric inequality on the discrete torus. SIAM J. Appl. Math. 3, 32–37 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Bollobás, B., Leader, I.: Compressions and isoperimetric inequalities. J. Combin. Theory Ser. A 56(1), 47–62 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bollobás, B., Leader, I.: Isoperimetric inequalities for r-sets. Combin. Prob. Comput. 13, 277–279 (2004)

    Article  MATH  Google Scholar 

  12. Brouwer, A.E., Cohen, A., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  13. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  14. Cioabǎ, S.M., Kim, K., Koolen, J.H.: On a conjecture of Brouwer involving the connectivity of strongly regular graphs. J. Comb. Theory Ser. A 119, 904–922 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cioabǎ, S.M., Koolen, J.H., Li, W.: Disconnecting strongly regular graphs. Eur. J. Comb. 38, 1–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Christofides, D., Ellis, D., Keevash, P.: An approximate isoperimetric inequality for r-sets. Electron. J. Comb. 20(4), Paper 15, 12 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxf. Ser. (2) 12, 313–320 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frankl, P., Füredi, Z.: A short proof for a theorem of Harper about Hamming-spheres. Discret. Math. 34(3), 311–313 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Füredi, Z., Griggs, J.R.: Families of finite sets with minimum shadows. Combinatorica 6, 355–363 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall Mathematics Series I. Chapman & Hall, New York (1993)

    Google Scholar 

  21. Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Comb. Theory 1, 385–393 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cambridge Studies in Advanced Mathematics, 90. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  23. Hart, S.: A note on the edges of the \(n\)-cube. Discret. Math. 14, 157–163 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karachanjan, V.M.: A discrete isoperimetric problem on multidimensional torus (in Russian). Doklady AN Arm. SSR LXXIV(2), 61–65 (1982)

    Google Scholar 

  25. Katona, G.O.H.: A Theorem of Finite Sets. Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 187–207. Academic Press, London (1968)

    Google Scholar 

  26. Kruskal, J.B.: The Number of Simplices in a Complex. Mathematical Optimization Techniques, pp. 251–278. University of California Press, Berkeley (1963)

    Google Scholar 

  27. Leader, I.: Discrete Isoperimetric Inequalities. Probabilistic Combinatorics and Its Applications (San Francisco, CA, 1991).Proceedings of Symposium in Applied Mathematics, 44, American Mathematical Society, Providence, RI, pp. 57–80 (1991)

  28. Mörs, Michael: A generalization of a theorem of Kruskal. Gr. Comb. 1, 167–183 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Riordan, O.: An ordering on the discrete even torus, 110–127. SIAM J. Discret. Math. 11, 1 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the comments and remarks of the referees, pointing out some inaccuracies in the original manuscript and helping to improve the readability of the paper. V. Diego acknowledges support from Ministerio de Ciencia e Innovación, Spain, and the European Regional Development Fund under a FPI Grant in the project MTM2011-28800-C02-01. O. Serra was supported by the Spanish Ministerio de Economía y Competitividad under project MTM2014-54745-P. L. Vena was supported by the Center of Excellence-Inst. for Theor. Comp. Sci., Prague, P202/12/G061, by Project ERCCZ LL1201 CORES, and by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 339109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Diego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diego, V., Serra, O. & Vena, L. On a Problem by Shapozenko on Johnson Graphs. Graphs and Combinatorics 34, 947–964 (2018). https://doi.org/10.1007/s00373-018-1923-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1923-7

Keywords

Navigation