Skip to main content
Log in

On Geometric Graph Ramsey Numbers

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For any two-colouring of the segments determined by 3n − 3 points in general position in the plane, either the first colour class contains a triangle, or there is a noncrossing cycle of length n in the second colour class, and this result is tight. We also give a series of more general estimates on off-diagonal geometric graph Ramsey numbers in the same spirit. Finally we investigate the existence of large noncrossing monochromatic matchings in multicoloured geometric graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo, G., Dumitrescu, A., Hurtado, F., Noy, M., Urrutia, J.: On the chromatic number of some geometric Kneser graphs. Comput. Geom. Theory Appl. 32, 59–69 (2005)

    Google Scholar 

  2. Bialostocki, A., Harborth, H.: Ramsey colorings for diagonals of convex polygons. Abh. Braunschweig. Wiss. Ges. 47, 159–163 (1996)

    Google Scholar 

  3. Chvátal, V.: Tree—complete graph Ramsey numbers. J. Graph Theory 1, 93 (1977)

    Google Scholar 

  4. Cockayne, E.J., Lorimer, P.J.: The Ramsey number for stripes. J. Austral. Math. Soc. A 19, 252–256 (1975)

    Google Scholar 

  5. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Google Scholar 

  6. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. Wiley, New York (1990)

  7. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points (solution to problem E3341). Amer. Math. Monthly 98, 165–166 (1991)

    Google Scholar 

  8. Harborth, H., Lefmann, H.: Coloring arcs of convex sets. Discrete Math. 220, 107–117 (2000)

    Google Scholar 

  9. Károlyi, Gy., Pach, J., Tóth, G.: Ramsey-type results for geometric graphs. I. Discrete Comput. Geom. 18, 247–255 (1997)

    Google Scholar 

  10. Károlyi, Gy., Pach, J., Tóth, G., Valtr, P.: Ramsey-type results for geometric graphs. II. Discrete Comput. Geom. 20, 375–388 (1998)

  11. Károlyi, Gy., Rosta, V.: Generalized and geometric Ramsey numbers. Theor. Comput. Sci. 263, 87–98 (2001)

    Google Scholar 

  12. Nešetřil, J., Rödl, V. (Eds.): Mathematics of Ramsey Theory. Algorithms and Combinatorics, 5. Springer, Heidelberg (1990)

  13. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264–286 (1930)

    Google Scholar 

  14. Rosta, V.: Ramsey theory applications. Electron. J. Combin. 11, Dynamic Survey DS13 (electronic), 43 pages (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Károlyi.

Additional information

Research partially supported by Hungarian Scientific Research Grants OTKA T043631 and NK67867.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Károlyi, G., Rosta, V. On Geometric Graph Ramsey Numbers. Graphs and Combinatorics 25, 351–363 (2009). https://doi.org/10.1007/s00373-009-0847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-009-0847-7

Keywords

Navigation