Skip to main content
Log in

AWEDD: a descriptor simultaneously encoding multiscale extrinsic and intrinsic shape features

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We construct a novel descriptor called anisotropic wavelet energy decomposition descriptor (AWEDD) for non-rigid shape analysis, based on anisotropic diffusion geometry. We first extend the Dirichlet energy of the vertex coordinate function to an anisotropic version, then use multiscale anisotropic spectral manifold wavelets to decompose the Dirichlet energy to all vertices and collect local energy at each vertex to form AWEDD. AWEDD simultaneously encodes multiscale extrinsic and intrinsic shape features, which are more informative and robust than purely intrinsic or extrinsic descriptors. And the introduction of anisotropy endows AWEDD with stronger abilities of feature discrimination and intrinsic symmetry identification. Our results demonstrate that AWEDD is more discriminative than current state-of-the-art descriptors. In addition, we show that AWEDD is an excellent choice of the initial inputs for various shape analysis approaches, such as functional map pipelines and deep convolutional architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Andreux, M., Rodola, E., Aubry, M., Cremers, D.: Anisotropic Laplace–Beltrami operators for shape analysis. In: European Conference on Computer Vision, pp. 299–312. Springer (2014)

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416. ACM New York, NY, USA (2005)

  3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: International Conference on Computer Vision, pp. 1626–1633. IEEE (2011)

  4. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3d mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)

  5. Boscaini, D., Masci, J., Melzi, S., Bronstein, M.M., Castellani, U., Vandergheynst, P.: Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Comput. Graph. Forum 34(5), 13–23 (2015)

    Article  Google Scholar 

  6. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. Adv. Neural Inf. Process. Syst. 29 (2016)

  7. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35(2), 431–441 (2016)

    Article  Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, Berlin (2008)

  9. Cosmo, L., Minello, G., Bronstein, M., Rodolà, E., Rossi, L., Torsello, A.: 3d shape analysis through a quantum lens: the average mixing kernel signature. Int. J. Comput. Vis. pp. 1–20 (2022)

  10. Cosmo, L., Rodola, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec’16: Partial matching of deformable shapes. Proc. 3DOR 2(9), 12 (2016)

  11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  12. Donati, N., Corman, E., Ovsjanikov, M.: Deep orientation-aware functional maps: tackling symmetry issues in shape matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 742–751 (2022)

  13. Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2019)

  14. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hu, L., Li, Q., Liu, S., Liu, X.: Efficient deformable shape correspondence via multiscale spectral manifold wavelets preservation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14536–14545 (2021)

  16. Hu, L., Li, Q.S., Liu, S.J., Liu, X.R.: Spectral graph wavelet descriptor for three-dimensional shape matching. J. ZheJiang Univ. (Engineering Science) 53(4), 761–769 (2019)

  17. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  18. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 1–12 (2011)

    Article  Google Scholar 

  19. Lähner, Z., Rodola, E., Bronstein, M.M., Cremers, D., Burghard, O., Cosmo, L., Dieckmann, A., Klein, R., Sahillioglu, Y.: Shrec’16: Matching of deformable shapes with topological noise. Proc. 3DOR 2(10.2312) (2016)

  20. Leonardi, N., Van De Ville, D.: Tight wavelet frames on multislice graphs. IEEE Trans. Signal Process. 61(13), 3357–3367 (2013)

    Article  MathSciNet  Google Scholar 

  21. Li, L., Donati, N., Ovsjanikov, M.: Learning multi-resolution functional maps with spectral attention for robust shape matching. arXiv preprint arXiv:2210.06373 (2022)

  22. Li, Q., Hu, L., Liu, S., Yang, D., Liu, X.: Anisotropic spectral manifold wavelet descriptor. Comput. Graph. Forum 40(1), 81–96 (2021)

    Article  Google Scholar 

  23. Li, Q., Liu, S., Hu, L., Liu, X.: Shape correspondence using anisotropic chebyshev spectral cnns. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14658–14667 (2020)

  24. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: structured prediction for dense shape correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5659–5667 (2017)

  25. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)

    Article  Google Scholar 

  26. Manay, S., Hong, B.W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: European Conference on Computer Vision, pp. 87–99. Springer (2004)

  27. Melzi, S., Marin, R., Rodolà, E., Castellani, U., Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Shrec 2019: Matching humans with different connectivity. In: Eurographics Workshop on 3D Object Retrieval, vol. 7 (2019)

  28. Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., Ovsjanikov, M.: Zoomout: spectral upsampling for efficient shape correspondence. ACM Trans. Graph. 38(6), 1–14 (2019)

    Article  Google Scholar 

  29. Melzi, S., Rodola, E., Castellani, U., Bronstein, M.M.: Shape analysis with anisotropic windowed fourier transform. In: International Conference on 3D Vision, pp. 470–478. IEEE (2016)

  30. Melzi, S., Spezialetti, R., Tombari, F., Bronstein, M.M., Stefano, L.D., Rodola, E.: Gframes: Gradient-based local reference frame for 3d shape matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4629–4638 (2019)

  31. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

  32. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  MathSciNet  Google Scholar 

  33. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 1–11 (2012)

    Article  Google Scholar 

  34. Panine, M., Kirgo, M., Ovsjanikov, M.: Non-isometric shape matching via functional maps on landmark-adapted bases. arXiv preprint arXiv:2205.04800 (2022)

  35. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–289 (2003)

    Article  Google Scholar 

  36. Pickup, D., Sun, X., Rosin, P.L., Martin, R.R., Cheng, Z., Lian, Z., Aono, M., Hamza, A.B., Bronstein, A., Bronstein, M., et al.: Shape retrieval of non-rigid 3d human models. Int. J. Comput. Vis. 120(2), 169–193 (2016)

    Article  MathSciNet  Google Scholar 

  37. Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Continuous and orientation-preserving correspondences via functional maps. ACM Trans. Graph. 37(6), 1–16 (2018)

    Article  Google Scholar 

  38. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as ‘shape-dna’of surfaces and solids. Comput.-Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  39. Robinette, K.M., Daanen, H., Paquet, E.: The caesar project: a 3-d surface anthropometry survey. In: Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062), pp. 380–386. IEEE (1999)

  40. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36(1), 222–236 (2017)

    Article  Google Scholar 

  41. Rodola, E., Rota Bulo, S., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4177–4184 (2014)

  42. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3d shapes. Int. J. Comput. Vis. 89(2), 248–265 (2010)

    Article  Google Scholar 

  43. Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233 (2007)

  44. Salti, S., Tombari, F., Di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Understand. 125, 251–264 (2014)

    Article  Google Scholar 

  45. Shamai, G., Kimmel, R.: Geodesic distance descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6410–6418 (2017)

  46. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  47. Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M., Kimmel, R., et al.: Efficient deformable shape correspondence via kernel matching. In: International Conference on 3D Vision, pp. 517–526. IEEE (2017)

  48. Wang, Y., Guo, J., Xiao, J., Yan, D.M.: A wavelet energy decomposition signature for robust non-rigid shape matching. In: SIGGRAPH Asia 2019 Posters, pp. 1–2. ACM (2019)

  49. Wang, Y., Guo, J., Yan, D.M., Wang, K., Zhang, X.: A robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6231–6240 (2019)

  50. Wang, Y., Guo, J., Yan, D.M., Wang, K., Zhang, X.: A robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

  51. Wang, Y., Ren, J., Yan, D.M., Guo, J., Zhang, X., Wonka, P.: Mgcn: descriptor learning using multiscale gcns. ACM Transactions on Graphics 39(4), 122–1 (2020)

  52. Zhang, H., Van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum 29(6), 1865–1894 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 62172447, 61876191), Hunan Provincial Natural Science Foundation of China (No. 2021JJ30172, 2023JJ40769), and the Open Project Program of the State Key Laboratory of Multimodal Artificial Intelligence Systems (No. 202200025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Hu.

Ethics declarations

Conflict of interest

All of authors have no conflict of interest.

Compliance with ethical standards

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Luo, F., Li, Q. et al. AWEDD: a descriptor simultaneously encoding multiscale extrinsic and intrinsic shape features. Vis Comput 40, 2537–2554 (2024). https://doi.org/10.1007/s00371-023-02935-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02935-6

Keywords

Navigation