Skip to main content
Log in

Low-dose CT image restoration based on noise prior regression network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Low-dose CT image (LDCT) restoration is a challenging task attracting the interest of researchers extensively. However, reducing the radiation dose may lead to increased noise and artifacts. Over the past years, deep learning has produced impressive results in low-dose CT image restoration by learning a nonlinear mapping function. However, the limited number of image pairs may be unavailable in medical applications. And the mapping space from high-resolution images (HR) to low-resolution images (LR) is extremely large, which can hardly find a good result. Furthermore, it is difficult to directly remove noise due to the lack of prior knowledge. Therefore, we introduce a noise prior regression network (NPRN) by providing a prior of the noise distribution and introducing a constraint to estimate the HR → LR mapping space. Furthermore, the noise prior makes the network focus on the noisy regions but also explicitly assesses the local consistency of the recovered regions. Simultaneously, the regression process does not depend on the pair images. We also compare our method with some state-of-the-art algorithms. The experimental results show that the proposed NPRN recovers structural textures effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herzog, P., Rieger, C.T.: Risk of cancer from diagnostic X-rays. The Lancet 363(9427), 2192–2193 (2004)

    Article  Google Scholar 

  2. Naidich, D.P., Marshall, C.H., Gribbin, C., Arams, R.S., McCauley, D.I.: Low-dose CT of the lungs: preliminary observations. Radiology 175(3), 729–731 (1990). https://doi.org/10.1148/radiology.175.3.2343122

    Article  Google Scholar 

  3. Ramírez, R.R., Kopell, B.H., Butson, C.R., Hiner, B.C., Baillet, S.: Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging. Neuroimage 56(1), 78–92 (2011). https://doi.org/10.1016/j.neuroimage.2011.02.002

    Article  Google Scholar 

  4. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am. J. Roentgenol. 193(3), 764–771 (2009)

    Article  Google Scholar 

  5. Wang, J., Li, T., Lu, H., Liang, Z.: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans. Med. Imag. 25(10), 1272–1283 (2006). https://doi.org/10.1109/TMI.2006.882141

    Article  Google Scholar 

  6. Singh, S., Kalra, M.K., Hsieh, J., et al.: Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257(2), 373–383 (2010). https://doi.org/10.1148/radiol.10092212

    Article  Google Scholar 

  7. Lewitt, R.M.: Multidimensional digital image representations using generalized Kaiser-Bessel window functions. JOSA A 7(10), 1834–1846 (1990). https://doi.org/10.1364/JOSAA.7.001834

    Article  Google Scholar 

  8. Elbakri, I.A., Fessler, J.A.: Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans. Med. Imag. 21(2), 89–99 (2002). https://doi.org/10.1109/42.993128

    Article  Google Scholar 

  9. Tian, Z., Jia, X., Yuan, K., Pan, T., Jiang, S.B.: Low-dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 56(18), 5949 (2011)

    Article  Google Scholar 

  10. Zhang, Y., Mou, X., Wang, G., Yu, H.: Tensor-based dictionary learning for spectral CT reconstruction. IEEE Trans. Med. Imag. 36(1), 142–154 (2016). https://doi.org/10.1109/TMI.2016.2600249

    Article  Google Scholar 

  11. Li, Z., Yu, L., Trzasko, J.D., et al.: Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41(1), 011908 (2014). https://doi.org/10.1118/1.4851635

    Article  Google Scholar 

  12. Hanchate, V., Joshi, K.: MRI denoising using BM3D equipped with noise invalidation denoising technique and VST for improved contrast. SN Appl. Sci. 2(2), 1–8 (2020). https://doi.org/10.1007/s42452-020-1937-7

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Yang, H., Min, K.: Classification of basic artistic media based on a deep convolutional approach. Vis. Comput. 36(3), 559–578 (2020). https://doi.org/10.1007/s00371-019-01641-6

    Article  MathSciNet  Google Scholar 

  15. Güera, D., Delp, E. J.: Deepfake video detection using recurrent neural networks. In: Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS): IEEE, pp. 1–6 (2018)

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

  17. Lu, Y., Fu, S., Zhang, X.H., Xie, N.: Denoising Monte Carlo renderings via a multi-scale featured dual-residual GAN. Vis. Comput. 37, 2513–2525 (2021). https://doi.org/10.1007/s00371-021-02204-4

    Article  Google Scholar 

  18. Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 624–632 (2017)

  19. Kim, J., Lee, J. K., Lee, K. M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1646–1654 (2016)

  20. Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhoum, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 91–99 (2018)

  21. Yu, H., Liu, D., Shi, H., et al.: Computed tomography super-resolution using convolutional neural networks. In: Proceedings of the 2017 IEEE international conference on image processing (ICIP): IEEE, pp. 3944–3948 (2017

  22. Jiang, X., Jin, Y., Yao, Y.: Low-dose CT lung images denoising based on multiscale parallel convolution neural network. Vis. Comput. 37, 2419–2431 (2020). https://doi.org/10.1007/s00371-020-01996-1

    Article  Google Scholar 

  23. Yang, Q., Yan, P., Zhang, Y., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imag. 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  24. Su, S.-Y., Huang, C.-W., Chen, Y.-N.: Dual supervised learning for natural language understanding and generation (2019)

  25. Fan, J., Cao, X., Yap, P.-T., Shen, D.: BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019). https://doi.org/10.1016/j.media.2019.03.006

    Article  Google Scholar 

  26. Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., Liu, T.-Y.: Dual supervised learning. In: International Conference on Machine Learning: PMLR, pp. 3789–3798 (2017)

  27. Zhu, J.-Y., Park, T., Isola, P., Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232 (2017)

  28. You, C., Li, G., Zhang, Y., et al.: CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans. Med. Imag. 39(1), 188–203 (2019). https://doi.org/10.1109/TMI.2019.2922960

    Article  Google Scholar 

  29. Guo, Y., Chen, J., Wang, J., et al.: Closed-loop matters: dual regression networks for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5407–5416 (2020)

  30. Batson, J., Royer, L.: Noise2self: blind denoising by self-supervision. In: International Conference on Machine Learning: PMLR, pp. 524–533 (2019)

  31. Tran, L. D., Nguyen, S. M., Arai, M.: GAN-based noise model for denoising real images. In: Proceedings of the Asian Conference on Computer Vision (2020)

  32. Jia, X., Liu, S., Feng, X., Zhang, L.: Focnet: a fractional optimal control network for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6054–6063 (2019)

  33. AAPM.: Low dose CT grand challenge (2017). https://www.aapm.org/GrandChallenge/LowDoseCT/#

  34. TCGA-KICH.: The cancer genome atlas kidney chromophobe (TCGA-KICH). https://wiki.cancerimagingarchive.net/display/Public/TCGA-KICH

  35. Kingma, D. P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick (2015)

  36. Lim, B., Son, S., Kim, H., Nah, S., Lee, K. M., IEEE.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1132–1140 (2017)

  37. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

  38. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

  39. Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681–4690 (2017

  40. Wang, X., Yu, K., Wu, S., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin.

Ethics declarations

Conflict of interest

There is no conflicts of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Jiang, Z., Huang, M. et al. Low-dose CT image restoration based on noise prior regression network. Vis Comput 39, 459–471 (2023). https://doi.org/10.1007/s00371-021-02341-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02341-w

Keywords

Navigation