Skip to main content
Log in

Compression of multi-temporal hyperspectral images based on RLS filter

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The large-scale acquisition of multi-temporal hyperspectral images has increased the demand for a more efficient compression strategy to reduce the large size of such images. In this work, we propose a lossless prediction-based compression technique for multi-temporal images. It removes temporal correlations along with spatial and spectral correlation, reducing the size of time-lapse hyperspectral image significantly. It predicts the pixel value of the target image by a linear combination of pixels from already predicted spectral and temporal bands. The weight matrix used in the prediction is updated using the RLS filter. Experimental results demonstrate the optimal number of bands to be selected for prediction, the comparative strength of individual correlations, and effectiveness of the technique in terms of bit-rate. Our results show that including temporal correlations reduces the bit-rate by 24.07% and our model provides optimization of 18.15% in terms of bits per pixel compared to the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ballester-Ripoll, R., Pajarola, R.: Lossy volume compression using tucker truncation and thresholding. Vis. Comput. 32(11), 1433–1446 (2016)

    Article  Google Scholar 

  2. Cheggoju, N., Satpute, V.R.: Inpac: independent pass coding algorithm for robust image data transmission through low SNR channels. Vis. Comput. 34(4), 563–573 (2018)

    Article  Google Scholar 

  3. Christopoulos, C., Skodras, A., Ebrahimi, T.: The jpeg2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  4. CRISP: principles of remote sensing—centre for remote imaging, sensing and processing, crisp. https://crisp.nus.edu.sg/~research/tutorial/image.htm. Accessed 15 Mar 2020

  5. Dua, Y., Kumar, V., Singh, R.S.: Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 59(9), 090902 (2020)

    Article  Google Scholar 

  6. Foster, D.: Time-lapse hyperspectral images of natural scenes 2015. http://personalpages.manchester.ac.uk/staff/david.foster/Time-Lapse_HSIs/Time-Lapse_HSIs_2015.html. Accessed 20 Feb 2020

  7. Foster, D.H., Amano, K., Nascimento, S.M.: Time-lapse ratios of cone excitations in natural scenes. Vision Res. 120, 45–60 (2016)

    Article  Google Scholar 

  8. Gao, Z.C., Zhang, X.L.: Lossless compression of hyperspectral images using improved locally averaged interband scaling lookup tables. In: 2011 International Conference on Wavelet Analysis and Pattern Recognition, pp. 91–96. IEEE (2011)

  9. Gupta, S., Agarwal, I., Singh, R.S.: Workflow scheduling using jaya algorithm in cloud. Concurr. Comput. Pract. Exp. 31(17), e5251 (2019)

    Article  Google Scholar 

  10. Huang, B., Sriraja, Y.: Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: Image and Signal Processing for Remote Sensing XII, vol. 6365, p. 63650L. International Society for Optics and Photonics (2006)

  11. Kiely, A.B., Klimesh, M.A.: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 47(8), 2672–2678 (2009)

    Article  Google Scholar 

  12. Kuanar, S., Athitsos, V., Pradhan, N., Mishra, A., Rao, K.R.: Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2576–2580. IEEE (2018)

  13. Kuanar, S., Conly, C., Rao, K.: Deep learning based HEVC in-loop filtering for decoder quality enhancement. In: 2018 Picture Coding Symposium (PCS), pp. 164–168. IEEE (2018)

  14. Kuanar, S., Rao, K., Conly, C.: Fast mode decision in HEVC intra prediction, using region wise CNN feature classification. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–4. IEEE (2018)

  15. Kuanar, S., Rao, K., Mahapatra, D., Bilas, M.: Night time haze and glow removal using deep dilated convolutional network. arXiv:1902.00855 (2019)

  16. Licciardi, G.A.: Hyperspectral compression. In: Data Handling in Science and Technology, vol. 32, pp. 55–67. Elsevier (2020)

  17. Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using calic. IEEE Geosci. Remote Sens. Lett. 1(1), 21–25 (2004)

    Article  Google Scholar 

  18. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)

    Article  Google Scholar 

  19. Mielikainen, J., Huang, B.: Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length. IEEE Geosci. Remote Sens. Lett. 9(6), 1118–1121 (2012)

    Article  Google Scholar 

  20. Mielikainen, J., Toivanen, P.: Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 41(12), 2943–2946 (2003)

    Article  Google Scholar 

  21. Muñoz-Gómez, J., Bartrina-Rapesta, J., Blanes, I., Jiménez-Rodríguez, L., Aulí-Llinàs, F., Serra-Sagristà, J.: 4d remote sensing image coding with jpeg2000. In: Satellite Data Compression, Communications, and Processing VI, vol. 7810, p. 78100X. International Society for Optics and Photonics (2010)

  22. Nagendran, R., Vasuki, A.: Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int. J. Wavelets Multiresolut. Inf. Process. 18(01), 1941008 (2020)

    Article  MathSciNet  Google Scholar 

  23. NASA: 123.0-b-info testdata. https://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData. Accessed 10 Mar 2020

  24. Sarkis, M., Diepold, K.: Depth map compression via compressed sensing. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 737–740. IEEE (2009)

  25. Shen, H., Jiang, Z., Pan, W.D.: Efficient lossless compression of multitemporal hyperspectral image data. J. Imaging 4(12), 142 (2018)

    Article  Google Scholar 

  26. Shen, H., Li, X., Zhang, L., Tao, D., Zeng, C.: Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse bayesian dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(2), 894–906 (2013)

    Article  Google Scholar 

  27. Shen, H., Pan, W.D., Dong, Y.: Efficient lossless compression of 4d hyperspectral image data. In: Proceedings of the 3rd International Conference on Advances in Big Data Analytics, Las Vegas, NV, USA, pp. 25–28 (2016)

  28. Song, J., Gao, S., Zhu, Y., Ma, C.: A survey of remote sensing image classification based on CNNS. Big Earth Data 3(3), 232–254 (2019)

    Article  Google Scholar 

  29. Song, J., Zhang, Z., Chen, X.: Lossless compression of hyperspectral imagery via RLS filter. Electron. Lett. 49(16), 992–994 (2013)

    Article  Google Scholar 

  30. Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis. Comput. 36, 1869–1882 (2019)

    Article  Google Scholar 

  31. Zhu, W., Du, Q., Fowler, J.E.: Multitemporal hyperspectral image compression. IEEE Geosci. Remote Sens. Lett. 8(3), 416–420 (2010)

    Article  Google Scholar 

  32. Zikiou, N., Lahdir, M., Helbert, D.: Support vector regression-based 3d-wavelet texture learning for hyperspectral image compression. Vis. Comput. 36, 1473–1490 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Dua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dua, Y., Singh, R.S. & Kumar, V. Compression of multi-temporal hyperspectral images based on RLS filter. Vis Comput 38, 65–75 (2022). https://doi.org/10.1007/s00371-020-02000-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02000-6

Keywords

Navigation