Skip to main content
Log in

A geometric strategy for computing intersections of two spatial parametric curves

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

An effective geometrically motivated intersection algorithm for two spatial parametric curves is presented. Examples are shown to illustrate the efficiency and robustness of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hoffmann, C.M.: Geometric and Solid Modeling. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  2. Sederberg, T.W., Parry, S.R.: Comparison of three curve intersection algorithms. Comput. Aided Des. 18(1), 58–63 (1986)

    Article  Google Scholar 

  3. Elber, G., Cohen, E.: Hidden curve removal for free form surfaces. Comput. Graph. 24(4), 95–104 (1990)

    Article  Google Scholar 

  4. Collins, G.E., Krandick, W.: An efficient algorithm for infallible polynomial complex root isolation. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, Berkeley, CA, pp. 189–191 (1992)

    Google Scholar 

  5. Farouki, R.T., Sakkalis, T.: Singular points of algebraic curves. J. Symb. Comput. 9(4), 457–483 (1990)

    Article  MathSciNet  Google Scholar 

  6. Sederberg, T.W.: Implicit and parametric curves and surfaces. PhD thesis, Purdue University (1983)

  7. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2(1), 150–159 (1980)

    Google Scholar 

  8. Koparkar, P.A., Mudur, S.P.: A new class of algorithms for the processing of parametric curves. Comput. Aided Des. 15(1), 41–45 (1983)

    Article  Google Scholar 

  9. Sederberg, T.W., White, S., Zundel, A.: Fat arcs: a bounding region with cubic convergence. Comput. Aided Geom. Des. 6, 205–218 (1989)

    Article  MATH  Google Scholar 

  10. Kajiya, J.: Ray tracing parametric patches. Comput. Graph. 16, 245–254 (1982)

    Article  Google Scholar 

  11. Wilkinson, J.H.: The evaluation of the zeros of ill-conditioned polynomials, parts I and II. Numer. Math. 1, 150–166, 167–180 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sederberg, T.W.: Algorithms for algebraic curve intersection. Comput. Aided Des. 21(9), 547–555 (1989)

    Article  MATH  Google Scholar 

  13. Kallay, M.: A geometric Newton–Raphson strategy. Comput. Aided Geom. Des. 18(8), 797–803 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, S.M., Wallner, J.: A second order algorithm for orthogonal projection onto curves and surfaces. Comput. Aided Geom. Des. 22(3), 251–260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, Y.L., Hewitt, W.T.: Point inversion and projection for NURBS curve and surface: control polygon approach. Comput. Aided Geom. Des. 20(2), 79–99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mørken, K., Reimers, M., Schulz, C.: Computing intersections of planar spline curves using knot insertion. Comput. Aided Geom. Des. 26, 351–366 (2009)

    Article  Google Scholar 

  17. Schulz, C.: Bézier clipping is quadratically convergent. Comput. Aided Geom. Des. 26(1), 61–74 (2009)

    Article  MATH  Google Scholar 

  18. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves. ACM Trans. Graph. 13, 73–100 (1994)

    Article  MATH  Google Scholar 

  19. Bartoň, M., Jüttler, B.: Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des. 24, 125–141 (2007)

    Article  MATH  Google Scholar 

  20. Hu, C.Y., Maekawa, T., Sherbrooke, E.C., Patrikalakis, N.M.: Robust interval algorithm for curve intersections. Comput. Aided Des. 28, 495–506 (1996)

    Article  Google Scholar 

  21. Palaj, V.: Bézier curves intersection using Monge projection. In: Proceedings of Symposium on Computer Geometry, SCG’2007

  22. Li, X.W., Mu, C.L., Ma, J.W., Wang, C.: Sixteenth-order method for nonlinear equations. Appl. Comput. Math. 215, 3754–3758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X.W., Mu, C.L., Ma, J.W., Hou, L.K.: Fifth-order iterative method for finding multiple roots of nonlinear equations. Numer. Algorithms (2010). doi:10.1007/s11075-010-9434-5

    Google Scholar 

  24. Noor, M.A., Waseem, M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Comput. Math. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sederberg, T.W., Nishita, T.: Curve intersection using Bézier clipping. Comput. Aided Des. 22(9), 538–549 (1990)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We take the opportunity to thank the reviewers for their thoughtful and meaningful comments. This work was supported by Scientific and Technology Foundation Funded Project of Guizhou Province ([2012]2193), Introduced Talents Scientific Research Foundation Funded Project of Guizhou Minzu University, Key Laboratory of Pattern Recognition and Intelligent System of Construction Project of Guizhou Province ([2009]4002) and Information Processing and Pattern Recognition for Graduate Education Innovation Base of Guizhou Province. The second author was supported by the general project of Yili Normal University (2012YB016) and the Fund of the Key Disciplines in the General Colleges and Universities of Xin Jiang Uygur Autonomous Region (2012ZDXK08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Xin, Q., Wu, Z. et al. A geometric strategy for computing intersections of two spatial parametric curves. Vis Comput 29, 1151–1158 (2013). https://doi.org/10.1007/s00371-012-0758-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0758-0

Keywords

Navigation