Skip to main content
Log in

An information theoretic approach to camera control for crowded scenes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Navigation and monitoring of large and crowded virtual environments is a challenging task and requires intuitive camera control techniques to assist users. In this paper, we present a novel automatic camera control technique providing a scene analysis framework based on information theory. The developed framework contains a probabilistic model of the scene to build entropy and expectancy maps. These maps are utilized to find interest points which represent either characteristic behaviors of the crowd or novel events occurring in the scene. After an interest point is chosen, the camera is updated accordingly to display this point. We tested our model in a crowd simulation environment and it performed successfully. Our method can be integrated into existent camera control modules in computer games, crowd simulations and movie pre-visualization applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christie, M., Olivier, P.: Camera control in computer graphics. In: Eurographics 2006 State of The Art Report (2006)

  2. Blinn, J.: Where am I? What am I looking at? IEEE Comput. Graph. Appl. 8(4), 76–81 (1988)

    Article  Google Scholar 

  3. Gleicher, M., Witkin, A.: Through-the-lens camera control. In: Computer Graphics (Proc. SIGGRAPH ’92), vol. 26 (1992). Proc. Siggraph ’92

  4. He, L.W., Cohen, M.F., Salesin, D.H.: The virtual cinematographer: a paradigm for automatic real-time camera control and directing. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 217–224. ACM, New York (1996)

    Chapter  Google Scholar 

  5. Kamada, T., Kawai, S.: A simple method for computing general position in displaying three-dimensional objects. Comput. Vis. Graph. Image Process. 41(1), 43–56 (1988)

    Article  Google Scholar 

  6. Arbel, T., Ferrie, F.P.: Viewpoint selection by navigation through entropy maps. Comput. Vis. IEEE Int. Conf. 1, 248 (1999)

    Google Scholar 

  7. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 659–666. ACM, New York (2005)

    Chapter  Google Scholar 

  8. Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: VMV ’01: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 273–280. Aka, Germany (2001)

    Google Scholar 

  9. Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006)

    Article  Google Scholar 

  10. Kwon, J.-Y., Lee, I.-K.: Determination of camera parameters for character motions using motion area. Vis. Comput. 24(7–9), 475–483 (2008)

    Article  Google Scholar 

  11. Stoev, S.L., Straßer, W.: A case study on automatic camera placement and motion for visualizing historical data. In: VIS ’02: Proceedings of the Conference on Visualization ’02, IEEE Computer Society, Washington (2002)

    Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  13. Kullback, S.: Information Theory and Statistics. Dover Books on Mathematics. Dover, New York (1997)

    MATH  Google Scholar 

  14. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  15. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  16. Wolfe, J.: Visual search. In: Pashler, H.E. (ed.) Attention, Chap. 1, pp. 13–69. University College London Press, London (1998)

    Google Scholar 

  17. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  18. Singh, S., Markou, M.: An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. 16(4), 396–407 (2004)

    Article  Google Scholar 

  19. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 631–637. IEEE Computer Society, Washington (2005)

    Google Scholar 

  20. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Article  Google Scholar 

  21. Reynolds, C.: Opensteer, steering behaviors for autonomous characters (2004). http://opensteer.sourceforge.net/. Last Visited: 2008-11-01

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagatay Turkay.

Additional information

This research is partially supported by Sabanci University Internal Grant IACF06-00423 and Istanbul Metropolitan Municipality Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkay, C., Koc, E. & Balcisoy, S. An information theoretic approach to camera control for crowded scenes. Vis Comput 25, 451–459 (2009). https://doi.org/10.1007/s00371-009-0337-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0337-1

Keywords

Navigation