Skip to main content
Log in

Efficient contrast invariant stereo correspondence using dynamic programming with vertical constraint

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a dense stereo algorithm based on the census transform and improved dynamic programming (DP). Traditional scanline-based DP algorithms are the most efficient ones among global algorithms, but are well-known to be affected by the streak effect. To solve this problem, we improve the traditional three-state DP algorithm by taking advantage of an extended version of sequential vertical consistency constraint. Using this method, we increase the accuracy of the disparity map greatly. Optimizations have been made so that the computational cost is only increased by about 20%, and the additional memory needed for the improvement is negligible. Experimental results show that our algorithm outperforms many state-of-the-art algorithms with similar efficiency on Middlebury College’s stereo Web site. Besides, the algorithm is robust enough for image pairs with utterly different contrasts by using of census transform as the basic match metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, H.H., Binford, T.O.: Depth from edge and intensity based stereo. In: Proc. Int. Joint Conf. on Artificial Intelligence, vol. 2, pp. 631–636. William Kaufmann, Vancouver, Canada (1981)

  2. Barnard, S.T.: Stochastic stereo matching over scale. Int. J. Comput. Vis. 3, 17–32 (1989)

    Article  Google Scholar 

  3. Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. In: Proceedings of IEEE Int. Conf. on Computer Vision, pp. 1073–1080. IEEE Comput. Soc. Press, Kerkyra, Greece (1998)

    Google Scholar 

  4. Bobick, A.F., Intille, S.S.: Large occlusion stereo. Int. J. Comput. Vis. 33(3), 181–200 (1999)

    Article  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Machine Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. Pattern Anal. Machine Intell. 25(8), 993–1008 (2003)

    Article  Google Scholar 

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Machine Intell. 8(6), 679–697 (1986)

    Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill, New York (1990)

    MATH  Google Scholar 

  9. Cox, I.J., Hingorani, S.L., Rao, S.B., Maggs, B.M.: A maximum likelihood stereo algorithm. Comput. Vis. Image Understanding 63(3), 542–567 (1996)

    Article  Google Scholar 

  10. Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z., Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real Time Correlation Based Stereo: Algorithm Implementations and Applications. INRIA Research Report 2013 (1993)

  11. Geman, S., Geman, D.: Stochastic relaxation, bibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  12. Gong, M., Yang, Y.-H.: Near real-time reliable stereo matching using programmable graphics hardware. IEEE Proc. Comput. Vis. Pattern Recognition 1, 924–931 (2005)

    Google Scholar 

  13. Hirschmüller, H.: Improvements in real-time correlation-based stereo vision. In: Workshop on Stereo and Multi-Baseline Vision, pp. 141–148 (2001)

  14. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. IEEE Proc. Comput. Vis. Pattern Recognition 2, 807–814 (2005)

    Google Scholar 

  15. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Machine Intell. 16(9), 920–932 (1994)

    Article  Google Scholar 

  16. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: Int. Conf. Computer Vision, pp. 1033–1040. IEEE Comput. Soc. Press, Nice, France (2003)

    Google Scholar 

  17. Leclercq, P.: Stereo Matching Algorithms. PhD thesis. University of Western Australia (2003)

  18. Mordohai, P., Medioni, G.: Stereo using monocular cues within the tensor voting framework. IEEE Trans. Pattern Anal. Machine Intell. 28(6), 968–982 (2006)

    Article  Google Scholar 

  19. Ogale, A.S., Aloimonos, Y.: Robust contrast invariant stereo correspondence. In: IEEE Int. Conf. Robotics and Automation, pp. 819–824. IEEE Comput. Soc. Press, Barcelona, Spain (2005)

    Chapter  Google Scholar 

  20. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  21. Scharstein, D., Szeliski, R.: Middlebury Stereo Vision Research Page. (URL http://www.middlebury.edu/stereo)

  22. Sun, J., Shum, H.Y., Zheng, N.N.: Stereo matching using belief propagation. IEEE Trans. Pattern Machine Intell. 25(7), 787–800 (2003)

    Article  Google Scholar 

  23. Szeliski, R.: Bayesian modeling of uncertainty in low-level vision. Int. J. Comput. Vis. 5(3), 271–302 (1990)

    Article  Google Scholar 

  24. The Aggregate Magic Algorithms. (URL http://aggregate.org/MAGIC/)

  25. Veksler, O.: Fast variable window for stereo correspondence using integral images. In: IEEE Proc. Computer Vision and Pattern Recognition, vol. 1, pp. 556–561. IEEE Comput. Soc. Press, Madison, WI, USA (2003)

  26. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global stereo matching using hierarchical belief propagation. In: Proc. British Machine Vision Association, p. III: 989 (2006)

  27. Yoon, K.-J., Kweon, I.-S.: Locally adaptive support-weight approach for visual correspondence search. In: IEEE Proc. Computer Vision and Pattern Recognition, vol. 2, pp. 924–931. IEEE Comput. Soc. Press, San Diego, CA, USA (2005)

  28. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proc. Third European Conf. Computer Vision, Lect. Notes Comput. Sci., vol. 2, pp. 151–158. Springer, Stockholm, Sweden (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Ma, L., Kimachi, M. et al. Efficient contrast invariant stereo correspondence using dynamic programming with vertical constraint. Visual Comput 24, 45–55 (2008). https://doi.org/10.1007/s00371-007-0177-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0177-9

Keywords

Navigation