Skip to main content

Advertisement

Log in

Geochemical origin of methane in hydrothermal fluid and its implication for the subseafloor hydrothermal circulation at the Middle Okinawa Trough

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Hydrothermal systems are ubiquitous in various tectonic settings and are important in transferring internal mass and energy sources from the crust and mantle to the oceans. However, the biogeochemical processes involved in subseafloor hydrothermal circulation are not fully understood. This study investigated the compositional and isotopic properties of the high-temperature fluids collected from three hydrothermal vents of the Izena Hole in the middle Okinawa Trough in 2016 with Remotely Operated Vehicle (ROV) named Faxian. The results confirm that the latest geochemical parameters of the high-temperature hydrothermal fluids are similar to the previously reported parameters and indicate the origin of methane in the hydrothermal fluid. The nearly identical geochemistry of the three fluids indicate that they likely shared a common fluid reservoir. The endmember hydrothermal fluid contained isotopically 13C-moderate methane (− 30.4‰ to − 32.1‰), suggesting the predominance of thermogenic methane over biogenic methane incorporation in the hydrothermal fluids. The differences in the concentrations of ethane (C1/C2+  = 11,600, 5600, 970 for Faxian-1, Faxian-2, and Faxian-3, respectively) and molecular hydrogen (0.11, 0.67, and 2.4 mM for Faxian-1, Faxian-2, and Faxian-3, respectively) suggest significantly different thermal fluid-sediment interaction during the discharge stage between two hydrothermal fields. The relatively low contents of biogenic methane in all the fluids here indicated limited biogenic methane incorporation during the recharge stage due to the horizontal restriction of hydrothermal fluid circulation. The geochemical origins of methane in hydrothermal fluid and their relevance to hydrothermal fluid circulation revealed herein shed light on the different degrees of sediment influence in various geological/geographical settings in the Okinawa Trough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Datasets related to this article could be available from Marine Science Data Center of Institute of Oceanology, Chinese Academy of Sciences with permission (http://msdc.qdio.ac.cn/index.php?s=Cle/#0).

References

  • Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res Solid Earth 113:B08S09. https://doi.org/10.1029/2007JB005423

  • Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31(1):48–54

  • Blank JG, Delaney JR, Desmarais DJ (1993) The concentration and isotopic composition of carbon in basaltic glasses from the Juan-De-Fuca Ridge, Pacific-Ocean. Geochim Cosmochim Acta 57(4):875–887

    Article  Google Scholar 

  • Bowers TS, Vondamm KL, Edmond JM (1985) Chemical evolution of mid-ocean ridge hot springs. Geochim Cosmochim Acta 49(11):2239–2252

    Article  Google Scholar 

  • Butterfield DA, Seyfried WE Jr, Lilley MD (2003) Composition and evolution of hydrothermal fluids. In: Halbach PE, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Germany, pp 124–161

    Google Scholar 

  • Chan LH, Gieskes JM, You CF, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the guaymas basin, Gulf of California. Geochim Cosmochim Acta 58(20):4443–4454

    Article  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36 degrees 14 ’ N, MAR). Chem Geol 191(4):345–359

    Article  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RPV, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Vanandel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203(4385):1073–1083

    Article  Google Scholar 

  • Cruse AM, Seewald JS (2006) Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim Cosmochim Acta 70(8):2073–2092

    Article  Google Scholar 

  • Cruse AM, Seewald JS (2010) Low-molecular weight hydrocarbons in vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge. Geochim Cosmochim Acta 74(21):6126–6140

    Article  Google Scholar 

  • Deangelis MA, Lilley MD, Olson EJ, Baross JA (1993) Methane oxidation in deep-sea hydrothermal plumes of the endeavor segment of the Juan-De-Fuca Ridge. Deep-Sea Res Part I Oceanogr Res Pap 40(6):1169–1186

    Article  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts - analysis of phylogeny and specificity by 16s ribosomal-Rna sequences. J Bacteriol 170(6):2506–2510

    Article  Google Scholar 

  • Edmond, J.M., 1996. Seafloor hydrothermal systems. Physical, chemical, biological, and geological interactions - Humphris,SE, Zierenberg,RA, Mullineaux,LS, Thomson,RE. Science 271 (5255):1508–1508

  • Gallant RM, Von Damm KL (2006) Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°-25° S Central Indian Ridge. Geochem Geophys Geosyst 7:Q06018. https://doi.org/10.1029/2005GC001067

    Article  Google Scholar 

  • Gamo T, Sakai H, Kim ES, Shitashima K, Ishibashi J (1991) High alkalinity due to sulfate reduction in the clam hydrothermal field, Okinawa Trough. Earth Planet Sci Lett 107(2):328–338

    Article  Google Scholar 

  • Gamo T, Ishibashi J, Shitashima K (1996) Unique hydrothermal fluid from the DESMOS caldera, Manus Basin: Reply. Deep-Sea Res Part I Oceanogr Res Pap 43(11–12):1873–1875

    Article  Google Scholar 

  • Gamo T, Ishibashi J, Tsunogai U, Okamura K, Chiba H (2006) Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the western pacific. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions 166147

  • Halbach P, Nakamura K, Wahsner M, Lange J, Sakai H, Kaselitz L, Hansen RD, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Marten A, Ishibashi J, Czerwinski S, Blum N (1989) Probable modern analog of kuroko-type massive sulfide deposits in the Okinawa Trough back-arc basin. Nature 338(6215):496–499

    Article  Google Scholar 

  • Hattori S, Nashimoto H, Kimura H, Koba K, Yamada K, Shimizu M, Watanabe H, Yoh M, Yoshida N (2012) Hydrogen and carbon isotope fractionation by thermophilic hydrogenotrophic methanogens from a deep aquifer under coculture with fermenters. Geochem J 46(3):193–200

    Article  Google Scholar 

  • Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs KU (2009) The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta 73(11):3323–3336

    Article  Google Scholar 

  • Hinrichs KU, Hayes JM, Bach W, Spivack AJ, Hmelo LR, Holm NG, Johnson CG, Sylva SP (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci USA 103(40):14684–14689

    Article  Google Scholar 

  • Ijiri A, Tsunogai U, Gamo T, Nakagawa F, Sakamoto T, Saito S (2009) Enrichment of adsorbed methane in authigenic carbonate concretions of the Japan Trench. Geo-Mar Lett 29(5):301–308

    Article  Google Scholar 

  • Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back-arc basin Southwest of Japan. Chem Geol 123(1–4):1–15

    Article  Google Scholar 

  • Ishibashi J, Noguchi T, Toki T, Miyabe S, Yamagami S, Onishi Y, Yamanaka T, Yokoyama Y, Omori E, Takahashi Y, Hatada K, Nakaguchi Y, Yshizaki M, Konno U, Shibuya T, Takai K, Inagaki F, Kawagucci S (2014) Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin. Geochem J 48(4):357–369

    Article  Google Scholar 

  • James RH, Palmer MR (2000) Marine geochemical cycles of the alkali elements and boron: The role of sediments. Geochim Cosmochim Acta 64(18):3111–3122

    Article  Google Scholar 

  • James RH, Green DRH, Stock MJ, Alker BJ, Banerjee NR, Cole C, German CR, Huvenne VAI, Powell AM, Connelly DP (2014) Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochim Cosmochim Acta 139:47–71

    Article  Google Scholar 

  • Ji FW, Zhou HY, Yang QH, Gao H, Wang H, Lilley MD (2017) Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep-Sea Res Part I Oceanogr Res Pap 122:41–47

    Article  Google Scholar 

  • Kawagucci S, Okamura K, Kiyota K, Tsunogai U, Sano Y, Tamaki K, Gamo T (2008) Methane, manganese, and helium-3 in newly discovered hydrothermal plumes over the Central Indian Ridge, 18 °-20 ° S. Geochem Geophys Geosyst 9:Q10002. https://doi.org/10.1029/2008GC002082

  • Kawagucci S, Shirai K, Lan TF, Takahata N, Tsunogai U, Sano Y, Gamo T (2010a) Gas geochemical characteristics of hydrothermal plumes at the HAKUREI and JADE vent sites, the Izena Cauldron. Okinawa Trough Geochemical Journal 44(6):507–518

    Article  Google Scholar 

  • Kawagucci S, Toki T, Ishibashi J, Takai K, Ito M, Oomori T, Gamo T (2010b) Isotopic variation of molecular hydrogen in 20°–375°C hydrothermal fluids as detected by a new analytical method. J Geophys Res 115:G03021. https://doi.org/10.1029/2009JG001203

  • Kawagucci S, Chiba H, Shibash J, Yamanaka T, Toki T, Muramatsu Y, Ueno Y, Makabe A, Inoue K, Yoshida N, Nakagawa S, Nunoura T, Takai K, Takahata N, Sano Y, Narita T, Teranishi G, Obata H, Gamo T (2011) Hydrothermal fluid geochemistry at the Iheya North field in the Mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems. Geochem J 45(2):109–124

    Article  Google Scholar 

  • Kawagucci S, Ueno Y, Takai K, Toki T, Ito M, Inoue K, Makabe A, Yoshida N, Muramatsu Y, Takahata N, Sano Y, Narita T, Teranishi G, Obata H, Nakagawa S, Nunoura T, Gamo T (2013) Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation. Chem Geol 339:213–225

    Article  Google Scholar 

  • Kinoshita M, Yamano M (1997) Hydrothermal regime and constraints on reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from heat flow measurements. Journal of Geophysical Research-Solid Earth 102(B2):3183–3194

    Article  Google Scholar 

  • Kishida K, Sohrin Y, Okamura K, Ishibachi J (2004) Tungsten enriched in submarine hydrothermal fluids. Earth Planet Sci Lett 222(3–4):819–827

    Article  Google Scholar 

  • Konno U, Tsunogai U, Nakagawa F, Nakaseama M, Ishibashi JI, Nunoura T, Nakamura KI (2006) Liquid CO2 venting on the seafloor: Yonaguni knoll IV hydrothermal system, Okinawa Trough. Geophys Res Lett 33:L16607. https://doi.org/10.1029/2006GL026115

  • Kumagai H, Nakamura K, Toki T, Morishita T, Okino K, Ishibashi JI, Tsunogai U, Kawagucci S, Gamo T, Shibuya T, Sawaguchi T, Neo N, Joshima M, Sato T, Takai K (2008) Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: implications of their vent fluids’ distinct chemistry. Geofluids 8(4):239–251

    Article  Google Scholar 

  • Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878–881

    Article  Google Scholar 

  • Marumo K, Hattori KH (1999) Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: mineralogy, geochemistry and isotope characteristics. Geochim Cosmochim Acta 63(18):2785–2804

    Article  Google Scholar 

  • Masaki Y, Kinoshita M, Inagaki F, Nakagawa S, Takai K (2012) Possible kilometer-scale hydrothermal circulation within the iheya-north field, mid-okinawa trough, as inferred from heat flow data. Jamstec Rp res deve 12:1–12

  • Miyazaki J, Kawagucci S, Makabe A, Takahashi A, Kitada K, Torimoto J, Matsui Y, Tasumi E, Shibuya T, Nakamura K, Horai S, Sato S, Ishibashi J, Kanzaki H, Nakagawa S, Hirai M, Takaki Y, Okino K, Kayama Watanabe H, Kumagai H, Chen C (2017) Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. R Soc Open Sci  4:171570. https://doi.org/10.1098/rsos.171570

  • Mottl MJ, Wheat CG (1994) Hydrothermal circulation through midocean ridge flanks - fluxes of heat and magnesium. Geochim Cosmochim Acta 58(10):2225–2237

    Article  Google Scholar 

  • Mottl MJ, Seewald JS, Wheat CG, Tivey MK, Michael PJ, Proskurowski G, McCollom TM, Reeves E, Sharkey J, You CF, Chan LH, Pichler T (2011) Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim Cosmochim Acta 75(4):1013–1038

    Article  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54(1):141–155

    Article  Google Scholar 

  • Oremland RS, Desmarais DJ (1983) Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big-Soda Lake, Nevada - an alkaline, meromictic lake. Geochim Cosmochim Acta 47(12):2107–2114

    Article  Google Scholar 

  • Pearson A, Seewald JS, Eglinton TI (2005) Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim Cosmochim Acta 69(23):5477–5486

    Article  Google Scholar 

  • Penning H, Plugge CM, Galand PE, Conrad R (2005) Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status. Glob Change Biol 11(12):2103–2113

    Article  Google Scholar 

  • Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, Hourdez S, Girguis PR, Wankel SD, Barbe V, Pelletier E, Fink D, Borowski C, Bach W, Dubilier N (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476(7359):176–180

    Article  Google Scholar 

  • Proskurowski G, Lilley MD, Olson EJ (2008a) Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9 degrees 50 ’ N East Pacific Rise. Geochim Cosmochim Acta 72(8):2005–2023

    Article  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Fruh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008b) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319(5863):604–607

    Article  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Fruh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008c) The abiotic production of hydrocarbons at the Lost City hydrothermal field. Geochim Cosmochim Acta 72(12):A764–A764

    Google Scholar 

  • Quigley TM, Mackenzie AS (1988) The temperatures of oil and gas-formation in the sub-surface. Nature 333(6173):549–552

    Article  Google Scholar 

  • Reeves EP, Seewald JS, Saccocia P, Bach W, Craddock PR, Shanks WC, Sylva SP, Walsh E, Pichler T, Rosner M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75(4):1088–1123

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1993) The systematics of boron abundances in young volcanic-rocks. Geochim Cosmochim Acta 57(7):1489–1498

    Article  Google Scholar 

  • Sackett WM (1978) Carbon and hydrogen isotope effects during thermo-catalytic production of hydrocarbons in laboratory simulation experiments. Geochim Cosmochim Acta 42(6):571–580

    Article  Google Scholar 

  • Sakai H, Gamo T, Kim ES, Shitashima K, Yanagisawa F, Tsutsumi M, Ishibashi J, Sano Y, Wakita H, Tanaka T, Matsumoto T, Naganuma T, Mitsuzawa K (1990a) Unique chemistry of the hydrothermal solution in the Mid-Okinawa Trough backarc basin. Geophys Res Lett 17(12):2133–2136

    Article  Google Scholar 

  • Sakai H, Gamo T, Kim ES, Tsutsumi M, Tanaka T, Ishibashi J, Wakita H, Yamano M, Oomori T (1990b) Venting of carbon-dioxide rich fluid and hydrate formation in Mid-Okinawa Trough backarc basin. Science 248(4959):1093–1096

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05B07. https://doi.org/10.1029/2003GC000597

  • Sano Y, Kinoshita N, Kagoshima T, Takahata N, Sakata S, Toki T et al (2017) Origin of methane-rich natural gas at the west pacific convergent plate boundary. Sci Rep 7(1):15646

    Article  Google Scholar 

  • Schmidt K, Garbe-Schonberg D, Koschinsky A, Strauss H, Jost CL, Kleyenz V, Koniger P (2011) Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8 degrees 18 ’ S, Mid-Atlantic Ridge): constraints on fluid-rock interaction in heterogeneous lithosphere. Chem Geol 280(1–2):1–18

    Article  Google Scholar 

  • Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature 426(6964):327–333

    Article  Google Scholar 

  • Seewald JS, Seyfried WE (1990) The effect of temperature on metal mobility in subseafloor hydrothermal systems - constraints from basalt alteration experiments. Earth Planet Sci Lett 101(2–4):388–403

    Article  Google Scholar 

  • Seewald JS, Seyfried WE, Shanks WC (1994) Variations in the chemical and stable-isotope composition of carbon and sulfur species during organic-rich sediment alteration - an experimental and theoretical-study of hydrothermal activity at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58(22):5065–5082

    Article  Google Scholar 

  • Seyfried WE (1987) Experimental and theoretical constraints on hydrothermal alteration processes at midocean ridges. Annu Rev Earth Planet Sci 15:317–335

    Article  Google Scholar 

  • Seyfried WE, Janecky DR, Mottl MJ (1984) Alteration of the oceanic-crust - implications for geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48(3):557–569

    Article  Google Scholar 

  • Seyfried WE, Seewald JS, Berndt ME, Ding K, Foustoukos DI (2003) Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. J Geophys Res Solid Earth 108(B9):2429. https://doi.org/10.1029/2002JB001957

  • Shinjo R, Kato Y (2000) Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos 54(3–4):117–137

    Article  Google Scholar 

  • Sibuet JC, Letouzey J, Barbier F, Charvet J, Foucher JP, Hilde TWC, Kimura M, Chiao LY, Marsset B, Muller C, Stephan JF (1987) Back arc extension in the Okinawa Trough. J Geophys Res Solid Earth Planets 92(B13):14041

    Article  Google Scholar 

  • Suzuki R, Ishibashi JI, Nakaseama M, Konno U, Tsunogai U, Gena K, Chiba H (2008) Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resour Geol 58(3):267–288

    Article  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008a) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105(31):10949–10954

    Article  Google Scholar 

  • Takai K, Nunoura T, Ishibashi JI, Lupton J, Suzuki R, Hamasaki H, Ueno Y, Kawagucci S, Gamo T, Suzuki Y, Hirayama H, Horikoshi K (2008b) Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J Geophys Res Biogeosci 113:G02031. https://doi.org/10.1029/2007JG000636

  • Tivey MK, Becker E, Beinart R, Fisher CR, Girguis PR, Langmuir CH, Michael PJ, Reysenbach AL (2012) Links from mantle to microbe at the Lau Integrated Study Site insights from a back-arc spreading center. Oceanography 25(1):62–77

    Article  Google Scholar 

  • Toki T, Tsunogai U, Ishibashi J, Utsumi M, Gamo T (2008) Methane enrichment in low-temperature hydrothermal fluids from the Suiyo Seamount in the Izu-Bonin Arc of the western Pacific Ocean. J Geophys Res Solid Earth 113:B08S13. https://doi.org/10.1029/2007JB005476

  • Toki T, Uehara Y, Kinjo K, Ijiri A, Tsunogai U, Tomaru H, Ashi J (2012) Methane production and accumulation in the Nankai accretionary prism: results from IODP Expeditions 315 and 316. Geochem J 46(2):89–106

    Article  Google Scholar 

  • Toki T, Itoh M, Iwata D, Ohshima S, Shinjo R, Ishibashi JI, Tsunogai U, Takahata N, Sano Y, Yamanaka T, Ijiri A, Okabe N, Gamo T, Muramatsu Y, Ueno Y, Kawagucci S, Takai K (2016) Geochemical characteristics of hydrothermal fluids at Hatoma Knoll in the southern Okinawa Trough. Geochem J 50(6):493–525

    Article  Google Scholar 

  • Vogel TM, Oremland RS, Kvenvolden KA (1982) Low-temperature formation of hydrocarbon gases in San-Francisco bay sediment (California, USA). Chem Geol 37(3–4):289–298

    Article  Google Scholar 

  • Vondamm KL, Edmond JM, Grant B, Measures CI (1985) Chemistry of submarine hydrothermal solutions at 21-degrees-N, East Pacific rise. Geochim Cosmochim Acta 49(11):2197–2220

    Article  Google Scholar 

  • Welhan JA, Lupton JE (1987) Light-hydrocarbon gases in Guaymas basin hydrothermal fluids - thermogenic versus abiogenic origin. AAPG Bull Am Assoc Pet Geol 71(2):215–223

    Google Scholar 

  • Wen HY, Sano Y, Takahata N, Tomonaga Y, Yang TF (2016) Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the tokara islands, southern japan. Sci Rep 6:34126

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the captain and crew of the R/V Kexue, as well as the Faxian operating team, for assistance with sample collection. We also thank  the editor and the anonymous reviewers for the comments that significantly improved our manuscript.

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA2205050000), the National Natural Science Foundation of China (No. 41822604, 41576104), the National Natural Science Foundation of China (No. 41906103), and the Senior User Project of RV KEXUE (KEXUE2021H01, 2019G06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolun Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Lian, C., Zhang, X. et al. Geochemical origin of methane in hydrothermal fluid and its implication for the subseafloor hydrothermal circulation at the Middle Okinawa Trough. Geo-Mar Lett 41, 31 (2021). https://doi.org/10.1007/s00367-021-00706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-021-00706-7

Navigation