Skip to main content
Log in

hSMA-PS: a novel memetic approach for numerical and engineering design challenges

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Recent work trend is to hybridize two and more variants in order to recognize better quality of functional and remedies to the global challenges of optimisation. The newly formed Slime Mould Algorithm (SMA) is premised upon naturally occurring slime mould oscillation feature. There is an effort to build a more effective way to accomplish exploration through process of exploitation. In a comprehensive collection of tests, the proposed hybrid Slime Mould Algorithm (SMA) – Pattern Search Algorithm (PS) (hSMA-PS) has been evaluated by comparing against accurate and reliable meta-heuristics for accuracy testing. In addition, nine classical engineering based optimization problems with design are used to guesstimate the algorithm’s efficacy in engineering based optimization challenges. The experiments demonstrate that the suggested algorithm enjoys efficiency, sometimes amazing result on sophisticated search landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Flowchart 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Talbi ME (2009) Metaheuristics : from Design to Implementation Single solution-based metaheuristics, vol. 2009, no. 479

  2. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  3. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  4. Luo J, Chen H, Zhang Q, Xu Y, Huang H, Zhao X (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64(February 2019):654–668. https://doi.org/10.1016/j.apm.2018.07.044

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang M et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267(February 2018):69–84. https://doi.org/10.1016/j.neucom.2017.04.060

    Article  Google Scholar 

  6. Zhang Q, Chen H, Luo J, Xu Y, Wu C, Li C (2018) Chaos enhanced bacterial foraging optimization for global optimization. IEEE Access 6:64905–64919. https://doi.org/10.1109/ACCESS.2018.2876996

    Article  Google Scholar 

  7. Mafarja M et al (2018) Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems. Knowledge-Based Syst 145:25–45. https://doi.org/10.1016/j.knosys.2017.12.037

    Article  Google Scholar 

  8. Mafarja M et al (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2018.08.003

    Article  Google Scholar 

  9. Aljarah I, Mafarja M, Heidari AA, Faris H, Zhang Y, Mirjalili S (2018) Asynchronous accelerating multi-leader salp chains for feature selection. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2018.07.040

    Article  Google Scholar 

  10. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  11. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  12. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  13. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications Harris hawks optimization. Algorithm Appl. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  14. Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2020) A novel algorithm for global optimization: rat Swarm Optimizer. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02580-0

    Article  Google Scholar 

  15. Askari Q, Younas I, Saeed M (2020) Political Optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  16. Qais MH, Hasanien HM, Alghuwainem S (2020) Transient search optimization: a new meta-heuristic optimization algorithm. Appl Intell. https://doi.org/10.1007/s10489-020-01727-y

    Article  Google Scholar 

  17. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  18. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  19. Fouad MM, El-Desouky AI, Al-Hajj R, El-Kenawy ESM (2020) Dynamic group-based cooperative optimization algorithm. IEEE Access 8:148378–148403. https://doi.org/10.1109/ACCESS.2020.3015892

    Article  Google Scholar 

  20. Kaveh A, Khanzadi M, Moghaddam MR (2020) Billiards-inspired optimization algorithm; a new meta-heuristic method. Structures 27:1722–1739. https://doi.org/10.1016/j.istruc.2020.07.058

    Article  Google Scholar 

  21. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci (Ny) 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu Z et al (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282. https://doi.org/10.1016/j.eswa.2020.113282

    Article  Google Scholar 

  23. Liu Y, Li R (2020) PSA : a photon search algorithm. 16(2):478–493

  24. Tabari A, Ahmad A (2017) A new optimization method: Electro-Search algorithm. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2017.01.046

    Article  Google Scholar 

  25. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Computat 3(2):82–102

    Article  Google Scholar 

  26. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  27. Glover F (1989) Tabu search—Part I. Orsa J Comput 1(3):190–206

    Article  Google Scholar 

  28. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-Learning-Based Optimization: an optimization method for continuous non-linear large scale problems. Inf Sci (Ny) 183(1):1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  29. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Syst 89(July):228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  30. Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  31. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  32. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  33. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  34. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2009.2011992

    Article  Google Scholar 

  35. Pan WT (2012) A new Fruit Fly Optimization Algorithm: taking the financial distress model as an example. Knowledge-Based Syst 26:69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  36. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech. https://doi.org/10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  37. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  38. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  39. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  40. Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  41. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  42. Kennedy J, Eberhart R (1995) Particle swarm optimization

  43. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res. https://doi.org/10.2528/PIER07082403

    Article  Google Scholar 

  44. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88. https://doi.org/10.1016/j.advengsoft.2015.11.004

    Article  Google Scholar 

  45. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  46. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877. https://doi.org/10.1007/s00521-013-1433-8

    Article  Google Scholar 

  47. Yu JJQ, Li VOK (2015) A social spider algorithm for global optimization. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2015.02.014

    Article  Google Scholar 

  48. Kiran MS (2015) TSA: tree-seed algorithm for continuous optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  49. Salimi H (2015) Stochastic Fractal Search: a powerful metaheuristic algorithm. Knowledge-Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  50. Shahrouzi M, Salehi A (2020) Imperialist competitive learner-based optimization: a hybrid method to solve engineering problems. Int J Optim Civ Eng 10(1)

  51. Banerjee N, Mukhopadhyay S (2019) HC-PSOGWO: hybrid crossover oriented PSO and GWO based co-evolution for global optimization. In: 2019 IEEE Region 10 Symposium (TENSYMP), pp 162–167, https://doi.org/10.1109/TENSYMP46218.2019.8971231

  52. Seyyedabbasi A, Kiani F (2019) I-GWO and Ex-GWO: improved algorithms of the Grey Wolf Optimizer to solve global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-019-00837-7

    Article  Google Scholar 

  53. Muhammed DA, Saeed SAM, Rashid TA (2020) Improved Fitness-Dependent Optimizer Algorithm. IEEE Access 8:19074–19088. https://doi.org/10.1109/ACCESS.2020.2968064

    Article  Google Scholar 

  54. Xiao B, Wang R, Xu Y, Wang J, Song W, Deng Y (2019) Simplified Salp Swarm Algorithm. In: 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), pp 226–230, https://doi.org/10.1109/ICAICA.2019.8873515.

  55. Tejani GG, Kumar S, Gandomi AH (2019) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  56. Khatri A, Gaba A, Rana KPS, Kumar V (2019) A novel life choice-based optimizer. Soft Comput. https://doi.org/10.1007/s00500-019-04443-z

    Article  Google Scholar 

  57. Chen H, Wang M, Zhao X (2020) A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput 369:124872. https://doi.org/10.1016/j.amc.2019.124872

    Article  MathSciNet  MATH  Google Scholar 

  58. Yimit A, Iigura K, Hagihara Y (2020) Refined selfish herd optimizer for global optimization problems. Expert Syst Appl 139:112838. https://doi.org/10.1016/j.eswa.2019.112838

    Article  Google Scholar 

  59. Zhao W, Wang L, Zhang Z (2019) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  60. Mostafa Bozorgi S, Yazdani S (2019) IWOA: An improved whale optimization algorithm for optimization problems. J Comput Des Eng 6(3):243–259. https://doi.org/10.1016/j.jcde.2019.02.002

    Article  Google Scholar 

  61. Chen X, Tianfield H, Li K (2019) Self-adaptive differential artificial bee colony algorithm for global optimization problems. Swarm Evol Comput 45:70–91. https://doi.org/10.1016/j.swevo.2019.01.003

    Article  Google Scholar 

  62. Mohammadi-Balani A, Dehghan Nayeri M, Azar A, Taghizadeh-Yazdi M (2021) Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput Ind Eng 152:1–45. https://doi.org/10.1016/j.cie.2020.107050

    Article  Google Scholar 

  63. Debnath S, Arif W, Baishya S (2020) Buyer Inspired Meta-Heuristic Optimization Algorithm. Open Comput Sci 10(1):194–219

    Article  Google Scholar 

  64. Zitouni F, Harous S, Maamri R (2020) The Solar System Algorithm: a novel metaheuristic method for global optimization. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3047912

    Article  Google Scholar 

  65. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  66. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine Predators Algorithm: a nature-inspired metaheuristic. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  67. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  68. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution and learning optimization algorithm: a socio-inspired optimization methodology. Futur Gener Comput Syst 81:252–272. https://doi.org/10.1016/j.future.2017.10.052

    Article  Google Scholar 

  69. Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687. https://doi.org/10.1016/j.eswa.2014.05.009

    Article  Google Scholar 

  70. Abdel-Basset M, Chang V, Mohamed R (2020) HSMA_WOA: a hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl Soft Comput J 95:106642. https://doi.org/10.1016/j.asoc.2020.106642

    Article  Google Scholar 

  71. Naik MK, Panda R, Abraham A (2020) Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm. J King Saud Univ - Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.10.030

    Article  Google Scholar 

  72. Zhao J, Gao Z, Sun W (2020) The improved slime mould algorithm with Levy flight. J Phys. https://doi.org/10.1088/1742-6596/1617/1/012033

    Article  Google Scholar 

  73. Durmus A (2020) The optimal synthesis of thinned concentric circular antenna arrays using slime mold algorithm. Electromagnetics 40(8):541–553. https://doi.org/10.1080/02726343.2020.1838044

    Article  Google Scholar 

  74. Ekinci S, Izci D, Zeynelgil HL, Orenc S (2020) An application of slime mould algorithm for optimizing parameters of power system stabilizer. pp 1–5, https://doi.org/10.1109/ismsit50672.2020.9254597.

  75. Gao Z, Zhao J, Yang Y, Tian X (2020) The hybrid grey wolf optimization-slime mould algorithm. J Phys. https://doi.org/10.1088/1742-6596/1617/1/012034

    Article  Google Scholar 

  76. Gao Z, Zhao J, Li S (2020) The improved slime mould algorithm with cosine controlling parameters the improved slime mould algorithm with cosine controlling parameters. J Phys. https://doi.org/10.1088/1742-6596/1631/1/012083

    Article  Google Scholar 

  77. Zhao J, Gao Z-M (2020) The chaotic slime mould algorithm with chebyshev map. J Phys Conf Ser 1631:012071. https://doi.org/10.1088/1742-6596/1631/1/012071

    Article  Google Scholar 

  78. Wahid F et al (2020) An enhanced firefly algorithm using pattern search for solving optimization problems. IEEE Access 8:148264–148288. https://doi.org/10.1109/ACCESS.2020.3015206

    Article  Google Scholar 

  79. Wahid F, Ghazali R (2019) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evol Intell. https://doi.org/10.1007/s12065-018-0165-1

    Article  Google Scholar 

  80. Vaz AIF, Vicente LN (2007) A particle swarm pattern search method for bound constrained global optimization. J Glob Optim 39(2):197–219. https://doi.org/10.1007/s10898-007-9133-5

    Article  MathSciNet  MATH  Google Scholar 

  81. Kamboj VK, Bhadoria A, Gupta N (2018) A Novel Hybrid GWO-PS Algorithm for Standard Benchmark Optimization Problems. Ina Lett 3(4):217–241. https://doi.org/10.1007/s41403-018-0051-2

    Article  Google Scholar 

  82. Krishna AB, Saxena S, Kamboj VK (2021) A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05475-5

    Article  Google Scholar 

  83. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  84. Howard FL (1931) The life history of Physarum polycephalum. Am J Bot 18(2):116–133. https://doi.org/10.1002/j.1537-2197.1931.tb09577.x

    Article  Google Scholar 

  85. Kessler D (1982) Plasmodial structure and motility. In: Cell biology of Physarum and didymium

  86. Nakagaki T, Yamada H, Ueda T (2000) Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys Chem. https://doi.org/10.1016/S0301-4622(00)00108-3

    Article  Google Scholar 

  87. Kareiva P, Odell G (1987) Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am Nat. https://doi.org/10.1086/284707

    Article  Google Scholar 

  88. Latty T, Beekman M (2009) Food quality affects search strategy in the acellular slime mould, Physarum polycephalum. Behav Ecol 20(6):1160–1167. https://doi.org/10.1093/beheco/arp111

    Article  Google Scholar 

  89. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25. https://doi.org/10.1137/S1052623493250780

    Article  MathSciNet  MATH  Google Scholar 

  90. McCarthy JF (1989) Block-conjugate-gradient method. Phys Rev D 40(6):2149–2152. https://doi.org/10.1103/PhysRevD.40.2149

    Article  Google Scholar 

  91. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506. https://doi.org/10.1080/00207160108805080

    Article  MathSciNet  MATH  Google Scholar 

  92. Dhawale D, Kamboj VK (2020) hHHO-IGWO: a new hybrid harris hawks optimizer for solving global optimization problems. In: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), pp 52–57, https://doi.org/10.1109/ICCAKM46823.2020.9051509

  93. Yang XS (2012) Flower pollination algorithm for global optimization. https://doi.org/10.1007/978-3-642-32894-7_27

  94. Yue X, Zhang H, Yu H (2020) A hybrid grasshopper optimization algorithm with invasive weed for global optimization. IEEE Access 8:5928–5960. https://doi.org/10.1109/ACCESS.2019.2963679

    Article  Google Scholar 

  95. Yang XS (2010) Firefly algorithm, Lévy flights and global optimization. https://doi.org/10.1007/978-1-84882-983-1-15

  96. Wang M, Heidari AA, Chen M, Chen H, Zhao X, Cai X (2020) Exploratory differential ant lion-based optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113548

    Article  Google Scholar 

  97. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  98. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  99. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  100. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  101. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified Sine Cosine Algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395. https://doi.org/10.1016/j.eswa.2020.113395

    Article  Google Scholar 

  102. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2009.08.031

    Article  Google Scholar 

  103. Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, no. 0123456789. Springer, London

    Google Scholar 

  104. Chen H, Heidari AA, Zhao X, Zhang L, Chen H (2020) Advanced orthogonal learning-driven multi-swarm sine cosine optimization: framework and case studies. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2019.113113

    Article  Google Scholar 

  105. Bhadoria A, Kamboj VK (2019) Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm. Appl Intell. https://doi.org/10.1007/s10489-018-1325-9

    Article  Google Scholar 

  106. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput J 89:106018. https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  107. Le-Duc T, Nguyen QH, Nguyen-Xuan H (2020) Balancing composite motion optimization. Inf Sci (Ny) 520:250–270. https://doi.org/10.1016/j.ins.2020.02.013

    Article  MathSciNet  Google Scholar 

  108. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput (Swansea, Wales). https://doi.org/10.1108/02644401011008577

    Article  MATH  Google Scholar 

  109. Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) An Improved Moth-Flame Optimization algorithm with hybrid search phase. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2019.105277

    Article  Google Scholar 

  110. Rajeswara Rao B, Tiwari R (2007) Optimum design of rolling element bearings using genetic algorithms. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2006.02.004

    Article  MATH  Google Scholar 

  111. Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl Math Model 40(5–6):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  112. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  113. Abderazek H, Ferhat D, Ivana A (2017) Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear optimization. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9523-2

    Article  Google Scholar 

  114. Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) Crow search algorithm (CSA). In: Studies in Computational Intelligence

  115. Chlckermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng. https://doi.org/10.1002/(sici)1097-0207(19960315)39:5%3c829::aid-nme884%3e3.0.co;2-u

    Article  MathSciNet  Google Scholar 

  116. Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59. https://doi.org/10.1016/j.apm.2019.02.004

    Article  MathSciNet  MATH  Google Scholar 

  117. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  118. Cheng MY, Prayogo D (2014) Symbiotic Organisms Search: a new metaheuristic optimization algorithm. Comput Struct. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  119. Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Appl Soft Comput J 73:697–726. https://doi.org/10.1016/j.asoc.2018.09.019

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author wishes to thank Dr. O.P. Malik, Professor Emeritus, Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, CANADA for continuous support, guidance, encouragement and for providing advance research facilities for post-doctorate research at the University of Calgary, Alberta, CANADA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala Krishna, A., Saxena, S. & Kamboj, V.K. hSMA-PS: a novel memetic approach for numerical and engineering design challenges. Engineering with Computers 38, 3513–3547 (2022). https://doi.org/10.1007/s00366-021-01371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01371-1

Keywords

Navigation