Skip to main content
Log in

Developing three-dimensional mesh-free Galerkin method for structural analysis of general polygonal geometries

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, triangular prismatic cells for background integration on mesh-free methods are introduced and the Gauss integration scheme is developed in these cells. The cells are used in the mesh-free Galerkin method for free vibration, static and dynamic analysis of general polygonal plates of various thicknesses. The moving least square shape functions are used to construct the approximation of field variables, and the Hamilton principle is used to drive the weak form equations of motion. For the dynamic case, the resulted set of differential equations are solved by the Wilson method. The main objective of this work is developing of a mesh-free method for analysis of triangle and polygonal geometries and more important is to use the triangular prismatic cells and corresponding generalized Gaussian quadrature rules for integration in mesh-free methods. The cells can be used in a compound with cubic cells for discretization of any complicate three-dimensional geometries. To show this capability, free vibration analysis of a general pentagon plate is also performed. For all cases, the results show the flexibility and accuracy of mesh-free methods for irregular and complicate sharp corner geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Y, Lee JD, Eskandarian A (2006) Meshless methods in solid mechanics. Springer, New York

    MATH  Google Scholar 

  2. Liu GR, Quek SS (2003) The finite element method: a practical course. Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  3. Liu GR (2003) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton

    MATH  Google Scholar 

  4. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

    Google Scholar 

  5. Gu YT, Liu GR (2001) A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27:188–198

    Article  Google Scholar 

  6. Chen XL, Liu GR, Lim SP (2003) An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos Struct 59:279–289

    Article  Google Scholar 

  7. Xia P, Long SY, Cui HX, Li GY (2009) The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method. Eng Anal Bound Elem 33:770–777

    Article  MathSciNet  Google Scholar 

  8. Ferreira AJM, Batra RC, Roque CMC, Qianc LF, Jorge RMN (2006) Natural frequencies of functionally graded plates by a meshless method. Compos Struct 75:593–600

    Article  Google Scholar 

  9. Mollarazi HR, Foroutan M, Moradi-Dastjerdi R (2012) Analysis of free vibration of functionally graded material (FGM) cylinders by a meshlessmethod. J Compos Mater 46(5):507–515

    Article  Google Scholar 

  10. Foroutan M, Moradi-Dastjerdi R (2011) Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method. Acta Mech 219:281–290

    Article  Google Scholar 

  11. Soltanimaleki A, Foroutan M, Alihemmati J (2016) Free vibration analysis of functionally graded fiber reinforced cylindrical panels by a three dimensional mesh-free model. J Vib Control 22(19):4087–4098

    Article  MathSciNet  Google Scholar 

  12. Foroutan M, Mohammadi F, Alihemati J, Soltanimaleki A (2017) Dynamic analysis of functionally graded piezoelectric cylindrical panels by a three-dimensional mesh-free model. J Intell Mater Syst Struct 28(18):2516–2527

    Article  Google Scholar 

  13. Alihemmati J, Foroutan M, Soltanimaleki A (2017) Dynamic analysis of functionally graded fiber reinforced cylinders under an impact load by a three dimensional mesh free approach. J Dyn Behav Mater 3(3):391–406

    Article  Google Scholar 

  14. Lancaster P, Salkauskas K (1981) Surface generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  Google Scholar 

  15. Weinstock R (1974) Calculus of Variations with applications to physics and engineering. Dover Publications, New York

    MATH  Google Scholar 

  16. Lai M, Krempl E, Rubin D (2010) Introduction to continuum mechanics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  17. Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21:1129–1148

    Article  MathSciNet  Google Scholar 

  18. Hussain F, Karima MS, Ahamad R (2012) Appropriate Gaussian quadrature formulae for triangles. Int J Appl Math Comput 4(1):24–38

    Google Scholar 

  19. Rao SS (2010) Mechanical vibrations. Prentice Hall, Upper Saddle River

    Google Scholar 

  20. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  21. Cheung YK, Zhou D (2002) Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates. Int J Solids Struct 39:673–687

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the research deputy of Shahrekord University. The grant number was 97GRN1M835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alihemmati, J., Beni, Y.T. Developing three-dimensional mesh-free Galerkin method for structural analysis of general polygonal geometries. Engineering with Computers 36, 1059–1068 (2020). https://doi.org/10.1007/s00366-019-00749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00749-6

Keywords

Navigation