Skip to main content
Log in

Solving two-dimensional integral equations of the second kind on non-rectangular domains with error estimate

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the collocation method is applied on two-dimensional integral equations of the second kind on non-rectangular domains. Since the domains of these equations are non-rectangular and so directly applying the collocation method for them is difficult, at first, the integral equations are converted to equivalent integral equations on rectangular domains. Then, two-dimensional Jacobi collocation method is applied. Furthermore, an error estimate for the method is investigated and several examples demonstrate the accuracy and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Smetanin BI (1991) On an integral equation for axially-symmetric problems in the case of an elastic body containing an inclusion. J Appl Math Mech 55:371–375

    MathSciNet  MATH  Google Scholar 

  2. Manzhirov AV (1985) On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology. J Appl Math Mech 49:777–782

    MathSciNet  MATH  Google Scholar 

  3. Radlow J (1964) A two-dimensional singular integral equation of diffraction theory. Bull Am Math Soc 70:596–599

    MathSciNet  MATH  Google Scholar 

  4. Boersma J, Danick E (1993) On the solution of an integral equation arising in potential problems for circular and elliptic disks. SIAM J Appl Math 53:931–941

    MathSciNet  MATH  Google Scholar 

  5. Wolfe P (1971) Eigenfunctions of the integral equation for the potential of the charged disk. J Math Phys 12:1215–1218

    MathSciNet  MATH  Google Scholar 

  6. Kovalenko EV (1989) Some approximate methods of solving integral equations of mixed problems. J Appl Math Mech 53:85–92

    MathSciNet  MATH  Google Scholar 

  7. Kovalenco EV (1999) Some approximate methods for solving integral equations of mixed problems. Probl Math Appl 103:641–655

    Google Scholar 

  8. Semetanian BJ (1991) On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion. J Appl Math Mech 55:371–375

    MathSciNet  Google Scholar 

  9. Farengo R, Lee YC, Guzdar PN (1983) An electromagnetic integral equation: application to microtearing modes. Phys Fluids 26:3515–3523

    MATH  Google Scholar 

  10. Borowko M, Rzysko W, Sokoowski S, Staszewski T (2017) Integral equations theory for two-dimensional systems involving nanoparticles. Mol Phys 115:1065–1073

    Google Scholar 

  11. Mirkin MV, Bard AJ (1992) Multidimensional integral equations: a new approach to solving microelectrode diffusion problems: part 2. Applications to microband electrodes and the scanning electrochemical microscope. J Electroanal Chem 323:29–51

    Google Scholar 

  12. Hatamzadeh-Varmazyar S, Naser-Moghadasi M, Babolian E, Masouri Z (2008) Numerical approach to survey the problem of electromagnetic scattering from resistive based on using a set of orthogonal basis functions. Prog Electromagn Res 81:393–412

    Google Scholar 

  13. Tong MS (2007) A stable integral equation solver for electromagnetic scattering by large scatters with concave surface. Prog Electromagn Res 74:113–130

    Google Scholar 

  14. Voltchkova E (2005) Integro-differential equations for option prices in exponential Levy models. Finance Stoch 9:299–325

    MathSciNet  MATH  Google Scholar 

  15. Ansari R, Hosseini K, Darvizeh A, Daneshian B (2013) A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl Math Comput 219:4977–4991

    MathSciNet  MATH  Google Scholar 

  16. Ansari R, Gholami R, Hosseini K, Sahmani S (2011) A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory. Math Comput Model 54:2577–2586

    MathSciNet  MATH  Google Scholar 

  17. Yalcinbas S (2002) Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equations. Appl Math Comput 127:195–206

    MathSciNet  MATH  Google Scholar 

  18. Yalcinbas S, Sezer M (2000) The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials. Appl Math Comput 112:291–308

    MathSciNet  MATH  Google Scholar 

  19. Shahmorad S (2005) Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl Math Comput 167:1418–1429

    MathSciNet  MATH  Google Scholar 

  20. Shekarabi F Hosseini, Maleknejad K, Ezzati R (2015) Application of two-dimensional Bernstein polynomials for solving mixed Volterra–Fredholm integral equations. Afr Mat 26:1237–1251

    MathSciNet  MATH  Google Scholar 

  21. Babolian E, Bazm S, Lima P (2011) Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions. Commun Nonlinear Sci Numer Simul 16:1164–1175

    MathSciNet  MATH  Google Scholar 

  22. Abdelkawy MA, Amin AZM, Bhrawy AH, Machado JA, Lopes AM (2017) Jacobi collocation approximation for solving multi-dimensional Volterra integral equations. Int J Nonlinear Sci Numer Simul 18:411–426

    MathSciNet  MATH  Google Scholar 

  23. Mirzaee F, Hadadiyan E (2015) Applying the modified block-pulse functions to solve the three-dimensional Volterra–Fredholm integral equations. Appl Math Comput 265:759–767

    MathSciNet  MATH  Google Scholar 

  24. Ordokhani Y, Moosavi S (2015) Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation. Int J Nonlinear Sci 20:179–192

    MathSciNet  MATH  Google Scholar 

  25. Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. Int J Numer Methods Biomed Eng 26:705–715

    MathSciNet  MATH  Google Scholar 

  26. Saadatmandia A, Dehghan M (2008) A collocation method for solving Abel’s integral equations of first and second kinds. Z Naturforsch 63:752–756

    Google Scholar 

  27. Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:199–222

    MATH  Google Scholar 

  28. Assari P (2018) On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Eng Comput. https://doi.org/10.1007/s00366-018-0637-z

    Article  Google Scholar 

  29. Assari P, Dehghan M (2018) The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Appl Numer Math 131:140–157

    MathSciNet  MATH  Google Scholar 

  30. Esmaeilbeigi M, Mirzaee F, Moazami D (2017) A meshfree method for solving multidimensional linear Fredholm integral equations on the hypercube domains. Appl Math Comput 298:236–246

    MathSciNet  MATH  Google Scholar 

  31. Sadri K, Amini A, Cheng C (2017) Low cost numerical solution for three-dimensional linear and nonlinear integral equations via three-dimensional Jacobi polynomials. J Comput Appl Math 319:493–513

    MathSciNet  MATH  Google Scholar 

  32. Adibi H, Assari P (2010) Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math Probl Eng 2010:1–17

    MathSciNet  MATH  Google Scholar 

  33. Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181

    MathSciNet  MATH  Google Scholar 

  34. Ketabchi R, Mokhtari R, Babolian E (2017) A new approach for solving volterra integral equations using the reproducing kernel method. Int J Ind Math 9:21–26

    MATH  Google Scholar 

  35. Mahmoodi Z, Rashidinia J, Babolian E (2013) B-spline collocation method for linear and nonlinear Fredholm and Volterra integro-differential equations. Appl Anal 92:1787–1802

    MathSciNet  MATH  Google Scholar 

  36. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, New York

    MATH  Google Scholar 

  37. Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60:245–262

    MathSciNet  MATH  Google Scholar 

  38. Assari P, Adibi H, Dehghan M (2012) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algorithms 67:423–455

    MathSciNet  MATH  Google Scholar 

  39. Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239:72–92

    MathSciNet  MATH  Google Scholar 

  40. Assari P, Adibi H, Dehghan M (2013) A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl Math Model 73:9269–9294

    MathSciNet  MATH  Google Scholar 

  41. Parand K, Latifi S, Moayeri MM, Delkhosh M (2018) Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method for solving linear and nonlinear Fokker–Planck equations. Commun Math Phys 69:519–531

    MathSciNet  MATH  Google Scholar 

  42. Parand K, Delkhosh M (2018) Systems of nonlinear Volterra integro-differential equations of arbitrary order. Bol Soc Paran Mat 36:33–54

    MathSciNet  MATH  Google Scholar 

  43. Parand K, Bahramnezhad A, Farahani H (2018) A numerical method based on rational Gegenbauer functions for solving boundary layer flow of a Powell–Eyring non-Newtonian fluid. Comput Appl Math 37:6053–6075

    MathSciNet  Google Scholar 

  44. Bhrawy AH, Zaky MA, Baleanu D (2015) New numerical approximations for space- time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom Rep Phys 67:340–349

    Google Scholar 

  45. Allouch C, Sablonniere P, Sbibih D (2013) A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant. Numer Algorithms 62:445–468

    MathSciNet  MATH  Google Scholar 

  46. Parand K, Mazaheri P, Delkhosh M, Ghaderi A (2017) New numerical solutions for solving Kidder equation by using the rational Jacobi functions. SeMA J 74(4):569–583

    MathSciNet  MATH  Google Scholar 

  47. Parand K, Latifi S, Delkhosh M, Moayeri MM (2018) Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium. Eur Phys J Plus 133(1):28

    MATH  Google Scholar 

  48. Borhanifar A, Sadri K (2014) Numerical solution for systems of two dimensional integral equations by using Jacobi operational collocation method. Sohag J Math 1:15–26

    Google Scholar 

  49. Burden RL, Faires JD (2001) Numerical analysis. Youngstown State University, Youngstown

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Parand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parand, K., Yari, H. & Delkhosh, M. Solving two-dimensional integral equations of the second kind on non-rectangular domains with error estimate. Engineering with Computers 36, 725–739 (2020). https://doi.org/10.1007/s00366-019-00727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00727-y

Keywords

Navigation