Skip to main content
Log in

Wiener Algebras and Trigonometric Series in a Coordinated Fashion

  • Published:
Constructive Approximation Aims and scope

A Correction to this article was published on 02 June 2022

This article has been updated

Abstract

Let \(W_0(\mathbb {R})\) be the Wiener Banach algebra of functions representable by the Fourier integrals of Lebesgue integrable functions. It is proved in the paper that, in particular, a trigonometric series \(\sum \nolimits _{k=-\infty }^\infty c_k e^{ikt}\) is the Fourier series of an integrable function if and only if there exists a \(\phi \in W_0(\mathbb {R})\) such that \(\phi (k)=c_k\), \(k\in \mathbb {Z}\). If \(f\in W_0(\mathbb {R})\), then the piecewise linear continuous function \(\ell _f\) defined by \(\ell _f(k)=f(k)\), \(k\in \mathbb {Z}\), belongs to \(W_0(\mathbb {R})\) as well. Moreover, \(\Vert \ell _f\Vert _{W_0}\le \Vert f\Vert _{W_0}\). Similar relations are established for more advanced Wiener algebras. These results are supplemented by numerous applications. In particular, new necessary and sufficient conditions are proved for a trigonometric series to be a Fourier series and new properties of \(W_0\) are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Aubertin, B., Fournier, J.J.F.: Integrability theorems for trigonometric series. Stud. Math. 107, 33–59 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bary, N.K.: A Treatise on Trigonometric Series I and II. MacMillan, New York (1964)

    MATH  Google Scholar 

  3. Belinsky, E., Liflyand, E., Trigub, R.: The Banach algebra \(A^*\) and its properties. J. Fourier Anal. Appl. 3, 103–129 (1997)

    Article  MathSciNet  Google Scholar 

  4. Belov, A.S.: On positive definite piecewise linear functions and their applications, Tr. Mat. Inst. Steklova 280 (2013), 11–40 (Russian). English transl. in Proc. Steklov Inst. Math. 280 (2013), 5–33

  5. Bochkarev, S.V.: On a problem of Zygmund, Izv. Akad. Nauk SSSR, Ser. Mat. 37 (1973), 630–638 (Russian). English transl. in Math. USSR Izvestija 37 (1973), 629–637

  6. Buntinas M., Tanović-Miller, N.: New integrability and \(L^1\)-convergence classes for even trigonometric series II, Approximation Theory (J. Szabados and K Tandori, eds.), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam 58(1991), 103–125

  7. Dwight, H.B.: Tables of Integrals and Other Mathematical Data, 4th edn. The Macmillan Co., NY (1961)

    MATH  Google Scholar 

  8. Edwards, R.E.: Criteria for Fourier transforms. J. Aust. Math. Soc. 7, 239–246 (1967)

    Article  MathSciNet  Google Scholar 

  9. Edwards, R.E.: Fourier Series: A Modern Introduction, vol. I, II. Holt, Rinehard and Winston Inc, New York (1967)

    MATH  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  11. Fridli, S.: Integrability and \(L^1\)-convergence of trigonometric and Walsh series. Ann. Univ. Sci. Budapest Sect. Comp. 16, 149–172 (1996)

    MATH  Google Scholar 

  12. Fridli, S.: Hardy spaces generated by an integrability condition. J. Approx. Theory 113, 91–109 (2001)

    Article  MathSciNet  Google Scholar 

  13. Goldberg, R.R.: Restrictions of Fourier transforms and extension of Fourier sequences. J. Approx. Theory 3, 149–155 (1970)

    Article  MathSciNet  Google Scholar 

  14. Iosevich, A., Liflyand, E.: Decay of the Fourier Transform: Analytic and Geometric Aspects. Birkhäuser, Basel (2014)

    Book  Google Scholar 

  15. Liflyand, E.: On absolute convergence of Fourier integrals. Real Anal. Exchange 36, 353–360 (2010/11)

  16. Liflyand, E.: Salem conditions in the nonperiodic case. Mat. Zametki 104, 447–453 (2018) (Russian). English transl. in Math. Notes 104, 437–442 (2018)

  17. Liflyand, E.: Functions of Bounded Variation and Their Fourier Transforms. Birkhäuser, Basel (2019)

    Book  Google Scholar 

  18. Liflyand, E., Samko, S., Trigub, R.: The Wiener algebra of absolutely convergent Fourier integrals: an overview. Anal. Math. Phys. 2, 1–68 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liflyand, E., Trigub, R.: Conditions for the absolute convergence of Fourier integrals. J. Approx. Theory 163, 438–459 (2011)

    Article  MathSciNet  Google Scholar 

  20. Makarov, B., Podkorytov, A.: Real Analysis: Measures, Integrals and Applications. Springer, Berlin (2013)

    Book  Google Scholar 

  21. Montgomery, H.L.: Early Fourier Analysis, Pure and Applied Undergraduate Texts, 22. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  22. Rooney, P.G.: On the representation of sequences as Fourier coefficients. Proc. Am. Math. Soc. 11, 762–768 (1960)

    Article  MathSciNet  Google Scholar 

  23. Ryan, R.: Fourier transforms of certain classes of integrable functions. Trans. Am. Math. Soc. 105, 102–111 (1962)

    Article  MathSciNet  Google Scholar 

  24. Salem, R.: Sur les transformations des séries de Fourier. Fund. Math. 33, 108–114 (1939)

    Article  MathSciNet  Google Scholar 

  25. Salem, R.: Essais sur les séries trigonometriques. Actual. Sci. et Industr., Vol 862, Paris (1940)

  26. Sidon, S.: Reihentheoretische Sätze und ihre Anwendungen in der Theorie der Fourierischen Reihen. Math. Zeitschrift 10, 121–127 (1921)

    Article  Google Scholar 

  27. Telyakovskii, S.A.: An estimate, useful in problems of approximation theory, of the norm of a function by means of its Fourier coefficients, Trudy Mat. Inst. Steklova 109 (1971), 65–97 (Russian). English transl. in Proc. Steklov Math. Inst. 109 (1971), 73–109

  28. Trigub, R.M.: A relation between summability and absolute convergence of Fourier series and Fourier transforms, Doklady Akad. Nauk SSSR 217 (1974), 344–347 (Russian). English transl. in Soviet Math. Dokl. 15 (1974), 1015–1019

  29. Trigub, R.M.: Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus, Izv. Akad. Nauk SSSR, Ser.Mat. 44, 1378–1408 (1980) (Russian). English translation in Math. USSR Izv. 17 (1981), 567–593

  30. Trigub, R.M.: Almost everywhere summability of Fourier series with indication of the set of convergence, Mat. Zametki 100, 163–179 (2016) (Russian). English transl. in Math. Notes 100, 139–153 (2016)

  31. Trigub, R.M., Belinsky, E.S.: Fourier Analysis and Appoximation of Functions. Kluwer, New York (2004)

    Book  Google Scholar 

  32. Zastavnyi, V.P.: A generalization of Schep’s theorem on the positive definiteness of a piecewise linear function. Mat. Zametki 107, 873–887 (2020). ((Russian))

    Article  MathSciNet  Google Scholar 

  33. Zygmund, A.: Trigonometric Series, vol. I, II. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for thorough reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Liflyand.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liflyand, E., Trigub, R. Wiener Algebras and Trigonometric Series in a Coordinated Fashion. Constr Approx 54, 185–206 (2021). https://doi.org/10.1007/s00365-021-09527-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-021-09527-4

Keywords

Mathematics Subject Classification

Navigation