Skip to main content
Log in

Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence

  • Published:
Constructive Approximation Aims and scope

Abstract

We investigate the approximation of d-variate periodic functions in Sobolev spaces of dominating mixed (fractional) smoothness \(s>0\) on the d-dimensional torus, where the approximation error is measured in the \(L_2\)-norm. In other words, we study the approximation numbers \(a_n\) of the Sobolev embeddings \(H^s_\mathrm{mix}(\mathbb {T}^d)\hookrightarrow L_2(\mathbb {T}^d)\), with particular emphasis on the dependence on the dimension d. For any fixed smoothness \(s>0\), we find two-sided estimates for the approximation numbers as a function in n and d. We observe super-exponential decay of the constants in d, if n, the number of linear samples of f, is large. In addition, motivated by numerical implementation issues, we also focus on the error decay that can be achieved by approximations using only a few linear samples (small n). We present some surprising results for the so-called “preasymptotic” decay and point out connections to the recently introduced notion of quasi-polynomial tractability of approximation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, K.I.: About the approximation of periodic functions of many variable trigonometric polynomials. Dokl. Akad. Nauk SSR 32, 247–250 (1960)

    MathSciNet  Google Scholar 

  2. Bugrov, Y.S.: Approximation of a class of functions with a dominant mixed derivative. Mat. Sbornik 64(106), 410–418 (1964)

    MathSciNet  Google Scholar 

  3. Bungartz, H.-J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complex. 15, 167–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  5. Byrenheid, G., Dinh Dũng, Sickel, W., Ullrich, T.: Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \({H}^{\gamma }\). ArXiv e-prints (2014). arXiv:1408.3498 [math.NA]

  6. Chernov, A., Dũng, D.: New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness. ArXiv e-prints (2014). arXiv:1309.5170 [math.NA]

  7. Cobos, F., Kühn, T., Sickel, W.: Optimal approximation of Sobolev functions in the sup-norm. ArXiv e-prints (2015). arXiv:1505.02636 [math. FA]

  8. Dinh Dũng: Approximation of classes of functions according to the theory given by mixed modulus of continuity. In: Constructive Theory of Functions, pp. 43–48. Publishing House of the Bulgarian Academy of Sciences, Sofia (1984)

  9. Dũng, Dinh: B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness. J. Complex. 27, 541–567 (2011)

    Article  MATH  Google Scholar 

  10. Dũng, Dinh: Ullrich, T.: \(N\)-widths and \(\varepsilon \)-dimensions for high-dimensional approximations. Found. Comput. Math. 13, 965–1003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galeev, E.M.: Approximation by Fourier sums of classes of functions with several bounded derivatives. Mat. Zametki 23, 197–212 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Gnewuch, M., Woźniakowski, H.: Quasi-polynomial tractability. J. Complex. 27(3–4), 312–330 (2011)

    Article  MATH  Google Scholar 

  13. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Proceedings of Foundations of Computational Mathematics, Santander 2005, pp. 106–161. London Mathematical Society Lecture Notes Series, 331, Cambridge University Press, Cambridge (2006)

  14. Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constr. Approx. 16(4), 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolmogorov, A.N.: Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math. 37, 107–110 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  17. König, H.: Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel (1986)

    Book  MATH  Google Scholar 

  18. Kühn, T., Mayer, S., Ullrich, T.: Counting via entropy—new preasymptotics for the approximation numbers of Sobolev embeddings. ArXiv e-prints (2015). arXiv:1505.00631 [math. NA]

  19. Kühn, T., Sickel, W., Ullrich, T.: Approximation numbers of Sobolev embeddings—sharp constants and tractability. J. Complex. 30, 95–116 (2014)

    Article  MATH  Google Scholar 

  20. Mityagin, B.S.: Approximation of functions in \(L^p\) and \(C\) on the torus. Math. Notes 58, 397–414 (1962)

    Google Scholar 

  21. Nikol’skaya, N.S.: Approximation of differentiable functions of several variables by Fourier sums in the \(L_p\) metric. Sibirsk. Mat. Zh. 15, 395–412 (1974)

    MATH  Google Scholar 

  22. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume I: Linear Information. EMS, Zürich (2008)

  23. Novak, E., Woźniakowski, H.: Optimal order of convergence and (in)tractability of multivariate approximation of smooth functions. Constr. Approx. 30, 457–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Volume II: Standard information for functionals. EMS, Zürich (2010)

  25. Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Volume III: Standard information for operators. EMS, Zürich (2012)

  26. Pietsch, A.: Operator ideals. VEB Deutscher Verlag der Wissenschaften, Berlin (1978) and North-Holland, Amsterdam (1980)

  27. Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  28. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Berlin (1985)

    Google Scholar 

  29. Schwab, C., Süli, E., Todor, R.A.: Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 42(05), 777–819 (2008)

    Article  MATH  Google Scholar 

  30. Sickel, W., Ullrich, T.: Smolyak’s algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. Jenaer Schriften zur Math. und Inf. 14/06 (2006)

  31. Sickel, W., Ullrich, T.: Smolyak’s algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. 13, 387–425 (2007)

    MathSciNet  Google Scholar 

  32. Sickel, W., Ullrich, T.: Tensor products of Sobolev–Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sickel, W., Ullrich, T.: Spline interpolation on sparse grids. Appl. Anal. 90, 337–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk 148, 1042–1045 (1963)

    MATH  Google Scholar 

  35. Temlyakov, V.N.: About the approximation of periodic functions of several variables with bounded mixed derivatives. Dokl. Akad. Nauk 253, 544–548 (1980)

    MathSciNet  Google Scholar 

  36. Temlyakov, V.N.: Approximation of Periodic Functions. Nova Science, New York (1993)

    MATH  Google Scholar 

  37. Yserentant, H.: Regularity and approximability of electronic wave functions. Lecture Notes in Mathematics, vol. 2000. Springer, Berlin (2010)

Download references

Acknowledgments

The authors would like to thank the organizers of the Dagstuhl seminar 12391 “Algorithms and Complexity for Continuous Problems”, 2012, and the organizers of the HCM workshop “Discrepancy, Numerical Integration, and Hyperbolic Cross Approximation” where this work was initiated and pursued, for providing a pleasant and fruitful working atmosphere. They would also like to thank Dinh Dũng for commenting on earlier versions of this manuscript and pointing out the relation to [6]. Last but not least, the authors would like to thank an anonymous referee for asking for the details in Lemma 4.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kühn.

Additional information

Communicated by Wolfgang Dahmen.

Dedicated to Vladimir N. Temlyakov on the occasion of his 60th birthday.

Thomas Kühn is supported in part by the Spanish Ministerio de Economía y Competitividad (MTM2013-42220-P).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühn, T., Sickel, W. & Ullrich, T. Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence. Constr Approx 42, 353–398 (2015). https://doi.org/10.1007/s00365-015-9299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9299-x

Keywords

Mathematics Subject Classification

Navigation