Skip to main content
Log in

Confidence intervals centred on bootstrap smoothed estimators: an impossibility result

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Frequentist confidence intervals that include some element of data-based model selection or model averaging is an active area of research. Assessments of the performance, in terms of coverage and expected length, of such intervals yield few positive results. Efron, JASA 2014, proposed a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efron’s delta method approximation to the standard deviation of this estimator. Recently, Kabaila and Wijethunga assessed the performance of this confidence interval using a testbed consisting of two nested linear regression models, with error variance assumed known. This interval was shown to have far better coverage properties than the corresponding post-model-selection confidence interval. However, its expected length properties were not as good as had been hoped for. For this testbed, we ask the following question. Does there exist a formula for the data-based width of a confidence interval centred on the bootstrap smoothed estimator so that it has good performance in terms of both coverage and expected length? Using a decision-theoretic performance bound we answer this question in the negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bickel P, Doksum K (1977) Mathematical statistics. Basic ideas and selected topics. Holden-Day, Oakland

    MATH  Google Scholar 

  • Blyth C (1951) On minimax statistical decision procedures and their admissibility. Ann Math Stat 22:22–42

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    Article  MATH  Google Scholar 

  • Buckland S, Burnham K, Augustin N (1997) Model selection: an integral part of inference. Biometrics 53:603–618

    Article  MATH  Google Scholar 

  • Efron B (2014) Estimation and accuracy after model selection. J Am Stat Assoc 109:991–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Hastie T (2016) Computer age statistical inference: algorithms, evidence, and data science. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Fletcher D (2018) Model averaging. Springer, Berlin

    Book  Google Scholar 

  • Fletcher D, Turek D (2011) Model-averaged profile likelihood intervals. J Agric Biol Environ Stat 17:38–51

    Article  MathSciNet  MATH  Google Scholar 

  • Giri K (2008) Confidence intervals in regression utilizing prior information. PhD thesis, Department of Mathematics and Statistics, La Trobe University

  • Hall P (1992) The bootstrap and Edgeworth expansion. Springer, New York

    Book  MATH  Google Scholar 

  • Hjort N (2014) Comment on ‘estimation and accuracy after model selection’ by Bradley Efron. J Am Stat Assoc 109:1017–1020

    Article  MATH  Google Scholar 

  • Hjort N, Claeskens G (2003) Frequentist model average estimators. J Am Stat Assoc 98:879–899

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges J, Lehmann E (1952) The use of previous experience in reaching statistical decisions. Ann Math Stat 23:396–407

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone I (2019) Gaussian estimation: sequence and wavelet models. Book Draft, version of September 16, 2019. https://imjohnstone.su.domains/

  • Kabaila P (2009) The coverage properties of confidence regions after model selection. Int Stat Rev 77:405–414

    Article  Google Scholar 

  • Kabaila P (2018) On the minimum coverage probability of model averaged tail area confidence intervals. Can J Stat 46:279–297

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Giri K (2009) Confidence intervals in regression utilizing prior information. J Stat Plan Inference 139:3419–3429

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Giri K (2013) Further properties of frequentist confidence intervals in regression that utilize uncertain prior information. Aust N Z J Stat 55:259–270

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Kong Y (2016) Lower bounds on integrated risk, subject to inequality constraints. Aust N Z J Stat 58:293–315

    Article  MathSciNet  Google Scholar 

  • Kabaila P, Tuck J (2008) Confidence intervals utilizing prior information in the Behrens–Fisher problem. Aust N Z J Stat 50:309–328

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Wijethunga C (2019) Confidence intervals centred on bootstrap smoothed estimators. Aust N Z J Stat 61:19–38

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Wijethunga C (2019) On confidence intervals centred on bootstrap smoothed estimators. Stat 8:e233

    Article  MATH  Google Scholar 

  • Kabaila P, Welsh A, Abeysekera W (2016) Model-averaged confidence intervals. Scand J Stat 43:35–48

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Welsh A, Mainzer R (2017) The performance of model averaged tail area confidence intervals. Commun Stat Theory Methods 46:10718–10732

    Article  MathSciNet  MATH  Google Scholar 

  • Kabaila P, Welsh A, Wijethunga C (2020) Finite sample properties of confidence intervals centered on a model averaged estimator. J Stat Plan Inference 207:10–26

    Article  MathSciNet  MATH  Google Scholar 

  • Kempthorne P (1983) Minimax-Bayes compromise estimators. In: Proceedings of the business and economic statistics section. American Statistical Association, Washington, pp 563–573

  • Kempthorne P (1987) Numerical specification of discrete least favorable prior distributions. SIAM J Sci Stat Comput 8:171–184

    Article  MathSciNet  MATH  Google Scholar 

  • Kempthorne P (1988) Controlling risks under different loss functions: the compromise decision problem. Ann Stat 16:1594–1608

    Article  MathSciNet  MATH  Google Scholar 

  • Leeb H, Pötscher B (2005) Model selection and inference: facts and fiction. Econom Theory 21:21–59

    Article  MathSciNet  MATH  Google Scholar 

  • Mainzer R, Kabaila P (2019) ciuupi: An R package for computing confidence intervals that utilize uncertain prior information. R Journal 11:323–336

    Article  Google Scholar 

  • Turek D, Fletcher D (2012) Model-averaged Wald confidence intervals. Comput Stat Data Anal 56:2809–2815

    Article  MathSciNet  MATH  Google Scholar 

  • Wald A (1950) Statistical decision functions. Wiley, New York

    MATH  Google Scholar 

  • Wijethunga C (2019) Confidence intervals constructed by model averaging and bootstrap smoothing. PhD thesis, Department of Mathematics and Statistics, La Trobe University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kabaila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 465 KB)

Appendix

Appendix

We will express all quantities of interest in terms of the random vector \((\widehat{\theta }, \widehat{\gamma })\), which has the following bivariate normal distribution:

$$\begin{aligned} \left[ {\begin{array}{c} \widehat{\theta } \\ \widehat{\gamma }\end{array} } \right] \sim N \left( \left[ {\begin{array}{c} \theta \\ \gamma \end{array} } \right] , \left[ {\begin{array}{cc} \sigma ^2 \, v_\theta &{} \rho \, \sigma \, {v_\theta }^{1/2} \\ \rho \, \sigma \, {v_\theta }^{1/2} &{} 1 \end{array} } \right] \right) . \end{aligned}$$
(6)

1.1 A.1 Proof of Theorem 1

The following proof is based, in part, on the derivations described in Section 4.3 of Giri (2008). The coverage probability of the confidence interval \(\text {CI}(s)\) is

$$\begin{aligned} \nonumber&P(\theta \in \text {CI}(s)) \\&= P\left( \widehat{\theta } - \sigma \, v_\theta ^{1/2}\, b(\widehat{\gamma }) - \sigma \, v_\theta ^{1/2}\, s(\widehat{\gamma }) \le \theta \le \widehat{\theta } - \sigma \, v_\theta ^{1/2}\, b(\widehat{\gamma }) + \sigma \, v_\theta ^{1/2}\, s(\widehat{\gamma }) \right) \\ \nonumber&= P\left( \sigma \, v_\theta ^{1/2} \big (b(\widehat{\gamma }) - s(\widehat{\gamma })\big ) \le \widehat{\theta } - \theta \le \sigma \, v_\theta ^{1/2} \big (b(\widehat{\gamma }) + s(\widehat{\gamma })\big ) \right) \\ \nonumber&= P\left( b(\widehat{\gamma }) - s(\widehat{\gamma }) \le \frac{\widehat{\theta } - \theta }{\sigma \, v_\theta ^{1/2}} \le b(\widehat{\gamma }) + s(\widehat{\gamma }) \right) \\&= P \big ( b(\widehat{\gamma }) - s(\widehat{\gamma }) \le G \le b(\widehat{\gamma }) + s(\widehat{\gamma }) \big ), \end{aligned}$$

where \(G = (\widehat{\theta } - \theta )/\big (\sigma \,{v_\theta ^{1/2}} \big )\). It follows from (6) that

$$\begin{aligned} \left[ {\begin{array}{c} G \\ \widehat{\gamma }\end{array} } \right] \sim N \left( \left[ {\begin{array}{c} 0 \\ \gamma \end{array} } \right] , \left[ {\begin{array}{cc} 1 &{} \rho \\ \rho &{} 1 \end{array} } \right] \right) . \end{aligned}$$
(7)

For given \(\rho \) and function s, the coverage probability of \(\text {CI}(s)\) is a function of \(\gamma \). We denote this coverage probability by \(c(\gamma ; s, \rho )\).

Since b and s are odd and even functions, respectively,

$$\begin{aligned} c(\gamma ; s, \rho )&= P \big ( -b(-\widehat{\gamma }) - s(-\widehat{\gamma }) \le G \le -b(-\widehat{\gamma }) + s(-\widehat{\gamma }) \big ) \\&= P \big ( b(-\widehat{\gamma }) - s(-\widehat{\gamma }) \le -G \le b(-\widehat{\gamma }) + s(-\widehat{\gamma }) \big ) \\&= P \big ( b(\widehat{\gamma }^{\prime }) - s(\widehat{\gamma }^{\prime }) \le G^{\prime } \le b(\widehat{\gamma }^{\prime }) + s(\widehat{\gamma }^{\prime }) \big ), \end{aligned}$$

where \(G^{\prime } = -G\) and \(\widehat{\gamma }^{\prime } = - \widehat{\gamma }\). It follows from (7) that

$$\begin{aligned} \left[ {\begin{array}{c} G^{\prime } \\ \widehat{\gamma }^{\prime } \end{array} } \right] \sim N \left( \left[ {\begin{array}{c} 0 \\ -\gamma \end{array} } \right] , \left[ {\begin{array}{cc} 1 &{} \rho \\ \rho &{} 1 \end{array} } \right] \right) . \end{aligned}$$

Hence \(c(\gamma ; s, \rho ) = c(-\gamma ; s, \rho )\).

Let \(\bar{k}(x) = k(x)\) for \(|x| < c \, \); otherwise \(\bar{k}(x) = 0\). Since \(b(x) = \rho \, \bar{k}(x)\),

$$\begin{aligned} c(\gamma ; s, \rho )&= P \big ( \rho \, \bar{k}(\widehat{\gamma }) - s(\widehat{\gamma }) \le G \le \rho \, \bar{k}(\widehat{\gamma }) + s(\widehat{\gamma }) \big )\\&= P \big ( - \rho \, \bar{k}(\widehat{\gamma }) - s(\widehat{\gamma }) \le - G \le - \rho \, \bar{k}(\widehat{\gamma }) + s(\widehat{\gamma }) \big )\\&= P \big ( (- \rho ) \, \bar{k}(\widehat{\gamma }) - s(\widehat{\gamma }) \le G^{\prime } \le (- \rho ) \, \bar{k}(\widehat{\gamma }) + s(\widehat{\gamma }) \big ), \end{aligned}$$

where \(G^{\prime } = -G\). It follows from (7) that

$$\begin{aligned} \left[ {\begin{array}{c} G^{\prime } \\ \widehat{\gamma } \end{array} } \right] \sim N \left( \left[ {\begin{array}{c} 0 \\ \gamma \end{array} } \right] , \left[ {\begin{array}{cc} 1 &{} - \rho \\ - \rho &{} 1 \end{array} } \right] \right) . \end{aligned}$$

Hence \(c(\gamma ; s, \rho ) = c(\gamma ; s, -\rho )\).

It follows from (7) that the probability distribution of G, conditional on \(\widehat{\gamma }=h\), is \(N\big (\rho (h-\gamma ), 1-\rho ^2 \big )\). Note that

$$\begin{aligned}&P \big ( b(\widehat{\gamma }) - s(\widehat{\gamma }) \le G \le b(\widehat{\gamma }) + s(\widehat{\gamma }) \big )\\&= \int _{-\infty }^{\infty } P \big ( b(h) - s(h) \le G \le b(h) + s(h) \big | \widehat{\gamma }=h \big ) \, \phi (h-\gamma )\, dh\\&= \int _{-\infty }^{\infty } P \big ( b(h) - s(h) \le \widetilde{G} \le b(h) + s(h) \big ) \, \phi (h-\gamma )\, dh, \end{aligned}$$

where \(\widetilde{G} \sim N\big (\rho (h-\gamma ), 1-\rho ^2 \big )\). Thus

$$\begin{aligned} c(\gamma ; s, \rho )&= \int _{-\infty }^{\infty } \ell (h, \gamma ; s(h)) \, \phi (h-\gamma )\, dh\nonumber \\&= \int _{-\infty }^{-c} \ell (h, \gamma ; s(h)) \, \phi (h-\gamma )\, dh + \int _{-c}^{c} \ell (h, \gamma ; s(h)) \, \phi (h-\gamma )\, dh\nonumber \\&\quad + \int _{c}^{\infty } \ell (h, \gamma ; s(h)) \, \phi (h-\gamma )\, dh \nonumber \\&= \int _{-\infty }^{-c} \ell ^{\dag }(h, \gamma ) \, \phi (h-\gamma )\, dh + \int _{-c}^{c} \ell (h, \gamma ; s(h)) \, \phi (h-\gamma )\, dh\nonumber \\&\quad + \int _{c}^{\infty } \ell ^{\dag }(h, \gamma ) \, \phi (h-\gamma )\, dh. \end{aligned}$$
(8)

The usual \(1-\alpha \) confidence interval based on the full model \(\mathcal{M}_2\) has coverage probability \(1-\alpha \). Thus

$$\begin{aligned} 1 - \alpha&= P \big ( -z_{1-\alpha /2} \le G \le z_{1-\alpha /2} \big )\\&= \int _{-\infty }^{\infty } P\big ( -z_{1-\alpha /2} \le G \le z_{1-\alpha /2} \, \big | \, \widehat{\gamma }=h \big ) \, \phi (h-\gamma ) \, dh\\&= \int _{-\infty }^{\infty } \ell ^\dag (h, \gamma )\, \phi (h-\gamma ) \, dh. \end{aligned}$$

Therefore \(1-\alpha \) is equal to

$$\begin{aligned} \int _{-\infty }^{-c} \ell ^{\dag }(h, \gamma ) \, \phi (h-\gamma )\, dh + \int _{-c}^{c} \ell ^{\dag }(h, \gamma ) \, \phi (h-\gamma )\, dh + \int _{c}^{\infty } \ell ^{\dag }(h, \gamma ) \, \phi (h-\gamma )\, dh. \end{aligned}$$

It follows from this equality and (8) that

$$\begin{aligned} c(\gamma ; s, \rho )&= 1 - \alpha + \int _{-c}^{c} \big ( \ell (h, \gamma ; s(h)) - \ell ^{\dag }(h, \gamma ) \big ) \, \phi (h-\gamma )\, dh\\&= 1 - \alpha - \Big ( \int _{0}^{c} \left( \ell (h, \gamma ; s(h)) - \ell ^{\dag }(h, \gamma ) \right) \, \phi (h-\gamma )\, dh\\&\quad + \int _{-c}^{0} \left( \ell (h, \gamma ; s(h)) - \ell ^{\dag }(h, \gamma ) \right) \, \phi (h-\gamma )\, dh \Big ). \end{aligned}$$

Change the variable of integration to \(y=-h\) in the second integral. The result \(c(\gamma ; s, \rho ) = 1 - \alpha - R_1(s, \gamma )\) now follows from the fact that both s and \(\phi \) are even functions. \(\square \)

1.2 A.2 Proof of Theorem 2

The following proof is based, in part, on the derivations described in Section 4.3 of Giri (2008). Note that

$$\begin{aligned} e(\gamma ; s)&= \frac{1}{z_{1-\alpha /2}} \int _{-\infty }^{\infty } s(h) \, \phi (h-\gamma ) \, dh\nonumber \\&= \int _{-\infty }^{-c} \phi (h-\gamma )\, dh + \frac{1}{z_{1 - \alpha /2}} \int _{-c}^{c} s(h) \, \phi (h-\gamma )\, dh + \int _{c}^{\infty } \phi (h-\gamma ) \, dh, \end{aligned}$$
(9)

since \(s(x)=z_{1-\alpha /2}\) for all \(|x| \ge c\). Obviously,

$$\begin{aligned} 1 = \int _{-\infty }^{-c} \phi (h-\gamma )\, dh + \int _{-c}^{c} \phi (h-\gamma )\, dh + \int _{c}^{\infty } \phi (h-\gamma )\, dh. \end{aligned}$$

It follows from this equality and (9) that

$$\begin{aligned} e(\gamma ; s)&= 1 + \int _{-c}^{c} \left( \frac{s(h)}{z_{1-\alpha /2}} - 1 \right) \phi (h-\gamma )\, dh\\&= 1 + \int _{-c}^{0} \left( \frac{s(h)}{z_{1-\alpha /2}} - 1 \right) \phi (h-\gamma )\, dh + \int _{0}^{c} \left( \frac{s(h)}{z_{1-\alpha /2}} - 1 \right) \phi (h-\gamma )\, dh. \end{aligned}$$

Change the variable of integration to \(y=-h\) in the first integral on the right-hand side. The fact that both s and \(\phi \) are even functions implies that (1) is true. \(\square \)

1.3 A.3 Computation of the function \(\varvec{s_{\gamma , \nu }}\) for given \(\varvec{(\gamma ,\nu )}\)

Throughout this section we suppose that \((\varvec{\gamma },\varvec{\nu })\) is given. We describe the computation of \(s_{\gamma , \nu }\), a value of \(s \in \mathcal{D}\) that minimizes \(\widetilde{g}(s, \varvec{\gamma }, \varvec{\nu })\). Straightforward manipulations show that

$$\begin{aligned} \widetilde{g}\big (s, \varvec{\gamma }, \varvec{\nu }\big ) = \int _{0}^{c} q \big (s(h); h, \varvec{\gamma }, \varvec{\nu }\big ) \, dh, \end{aligned}$$
(10)

where \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) is defined to be

$$\begin{aligned}&\left( \frac{x}{z_{1-\alpha /2}} - 1 \right) \, \Big ( 2\phi (h) + \sum _{j=1}^{m_2} \nu _2(j)\, \big ( \phi (h-\gamma _2(j)) + \phi (h+\gamma _2(j)) \big ) \Big )\\&\quad + \sum _{j=1}^{m_1} \nu _1(j) \Big ( \left( \ell ^{\dag }(h, \gamma _1(j)) - \ell (h, \gamma _1(j); x )\right) \, \phi (h-\gamma _1(j)) \\&\quad + \left( \ell ^{\dag }(-h, \gamma _1(j)) - \ell (-h, \gamma _1(j); x ) \right) \, \phi (h+\gamma _1(j))\, \Big ). \end{aligned}$$

Recall that the functions \(\ell \) and \(\ell ^{\dag }\) are defined in the statement of Theorem 1. It follows from (10) that a function \(s_{\varvec{\gamma }, \varvec{\nu }}\), defined as a minimizer of \(\widetilde{g}(s, \varvec{\gamma }, \varvec{\nu })\) over \(s \in \mathcal{D}\), may be found as follows. We set \(s_{\varvec{\gamma }, \varvec{\nu }}(h)\), for any \(h \in [0, c]\), to be a minimizer over \(x\in [0, \infty )\) of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\).

Now \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) is a continuous function of \(x \in [0, \infty )\) for all \(h \in [0,c]\) and every given \((\varvec{\gamma }, \varvec{\nu })\). An examination of some examples of this function of \(x \in [0, \infty )\) show that this function may have several local minima, including the possibility of a local minimum at \(x = 0\). Consequently, the value of \(x \in [0, \infty )\) that minimizes \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) may change discontinuously, as h increases. In other words, the function \(s_{\varvec{\gamma }, \varvec{\nu }}(h)\) may have discontinuities. Figure 5 of the Supplementary Information provides some illustrations of functions \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) of \(x\in [0, \infty )\) that have two local minima. Figure 4 of the Supplementary Information provides an illustration of a function \(s_{\varvec{\gamma }, \varvec{\nu }}(h)\) with discontinuities.

To evaluate the lower bound (3), we need to evaluate

$$\begin{aligned} \widetilde{g}\big (s_{\varvec{\gamma }, \varvec{\nu }}, \varvec{\gamma }, \varvec{\nu }\big ) = \int _{0}^{c} q \big (s_{\varvec{\gamma }, \varvec{\nu }}(h); h, \varvec{\gamma }, \varvec{\nu }\big ) \, dh. \end{aligned}$$
(11)

Although the function \(s_{\varvec{\gamma }, \varvec{\nu }}(h)\) may have discontinuities, the integrand of the integral on the right-hand side of (11) is a continuous function of \(h \in [0, c]\). An illustration of this, when the function \(s_{\varvec{\gamma }, \varvec{\nu }}(h)\) has discontinuities, is provided by Figure 3 of the Supplementary Information.

To carry out the computation of the function \(s_{\varvec{\gamma }, \varvec{\nu }}\) accurately and effectively, we use the properties of \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx\), considered as a function of x, described in Appendix A.4. Suppose that \(h \in [0, c]\) is given. Theorem 3 of Appendix A.4 leads to the procedure described at the end of this appendix for finding an interval \(\big [0, \widetilde{x}\big ]\) that must contain a value of \(x \ge 0\) that minimizes \(q(x; h, \varvec{\gamma }, \varvec{\nu })\).

We use the following two step procedure to find the value of \(x \in [0, \widetilde{x}]\) that minimizes \(q(x; h, \varvec{\gamma }, \varvec{\nu })\). We find all possible local minima in Step 1 and compare them to find the global minimum in Step 2.

Step 1: By considering \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx\), find all the local minimizers of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) in the interval \([0, \widetilde{x}]\). Define w to be the smallest integer that is greater than or equal to \(10 \, \widetilde{x}\). We evaluate \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx\) on the evenly-spaced grid \(x_1=0, x_2=0.1, x_3=0.2, \dots , x_w\) of values of x. To find the values of \(x \in [0, x_w]\) that are local minimizers of \(q(x; h, \gamma , \nu )\), we need to consider the following two cases.

\(Case 1: x = 0\)

\(x=0\) is a local minimizer of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) if either \(dq(0; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\) or \(dq(0; h, \varvec{\gamma }, \varvec{\nu })/dx = 0\) and \(dq(x_2; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\); otherwise \(x=0\) is not a local minimizer.

\(Case 2: 0< x < x_w\)

If \(dq(x_i; h, \varvec{\gamma }, \varvec{\nu })/dx < 0\) and \(dq(x_{i+1}; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\), then \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx\) has a zero in the interval \([x_i, x_{i+1}]\) that is a local minimizer of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\). We find this zero using the R function uniroot, to which we provide the interval \([x_i, x_{i+1}]\). Also, if \(dq(x_i; h, \varvec{\gamma }, \varvec{\nu })/dx = 0\) and \(dq(x_{i-1}; h, \varvec{\gamma }, \varvec{\nu })/dx < 0\) and \(dq(x_{i+1}; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\) then \(x_i\) is a zero of \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx\) that is a local minimizer of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\).

Step 2 Evaluate \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) at the local minimizers of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) found in Step 1. The global minimum of \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) is simply the minimum of all of the local minima.

1.4 A.4    Properties of \(\varvec{dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx}\) considered as a function of \(\varvec{x}\)

It is straightforward to show that

$$\begin{aligned} \ell (h, \gamma ; x) = \Phi \left( \frac{b(h) + x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) - \Phi \left( \frac{b(h) - x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) \end{aligned}$$

and

$$\begin{aligned} \ell ^{\dag }(h, \gamma ) = \Phi \left( \frac{z_{1 - \alpha /2} - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) - \Phi \left( \frac{- z_{1 - \alpha /2} - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) . \end{aligned}$$

It follows that

$$\begin{aligned} \frac{d\, q(x; h, \varvec{\gamma }, \varvec{\nu })}{dx} = t_1(h, \varvec{\gamma }, \varvec{\nu }) - t_2(x; h, \varvec{\gamma }, \varvec{\nu }), \end{aligned}$$

where \(t_1(h, \varvec{\gamma }, \varvec{\nu })\) is defined to be

$$\begin{aligned} \frac{1}{z_{1 - \alpha /2}} \Big ( 2\phi (h) + \sum _{j=1}^{m_2} \nu _2(j)\, \big ( \phi (h-\gamma _2(j)) + \phi (h+\gamma _2(j)) \big ) \Big ) \end{aligned}$$

and \(t_2(x; h, \varvec{\gamma }, \varvec{\nu })\) is defined to be

$$\begin{aligned} \sum _{j=1}^{m_1} \nu _1(j) \left( \phi (h-\gamma _1(j)) \frac{d\, \ell (h, \gamma _1(j); x)}{dx} + \phi (h+\gamma _1(j)) \frac{d\, \ell (-h, \gamma _1(j); x)}{dx} \right) , \end{aligned}$$

with

$$\begin{aligned} \frac{d\, \ell (h, \gamma ; x)}{dx} = \frac{1}{(1-\rho ^2)^{1/2}}\Bigg ( \phi \left( \frac{b(h) + x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) + \phi \left( \frac{b(h) - x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) \Bigg ). \end{aligned}$$

Suppose that \(h \in [0,c]\) and \((\varvec{\gamma }, \varvec{\nu })\) are given. Then \(t_1(h, \varvec{\gamma }, \varvec{\nu })\) is a fixed positive number. Observe that \(t_2(x; h, \varvec{\gamma }, \varvec{\nu })\) is a function of \(x \in [0, \infty )\) that can only take positive values and \(d\ell (h, \gamma ; x)/dx\) approaches 0 as \(x \rightarrow \infty \). We will use the following theorem to find \(\widetilde{x} < \infty \), such that \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\) for all \(x \ge \widetilde{x}\). This implies that a value of x that minimizes \(q(x; h, \varvec{\gamma }, \varvec{\nu })\) cannot belong to the interval \([\widetilde{x}, \infty )\).

Theorem 3

Let \(\mu (h, \rho , \gamma ) = b(h) - \rho (h-\gamma )\). Then \(t_2(x; h, \varvec{\gamma }, \varvec{\nu })\) is a decreasing function of \(x \in \big [x^*, \infty \big )\), where \(x^*\) is equal to

$$\begin{aligned} \max \Big ( \big |\mu (h, \rho , \gamma _1(1)) \big |, \, \big |\mu (-h, \rho , \gamma _1(1))\big |, \dots , \big |\mu (h, \rho , \gamma _1(m_1)) \big |, \, \big |\mu (-h, \rho , \gamma _1(m_1)) \big |\Big ). \end{aligned}$$

Proof

We first prove that, for every \(h \in \mathbb {R}\), \(d \ell (h, \gamma ; x)/dx\) is a decreasing function of \(x \in \big [|\mu (h, \rho , \gamma )|, \infty )\). Observe that, for all \(x \ge 0\),

$$\begin{aligned}&\phi \left( \frac{b(h) + x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) + \phi \left( \frac{b(h) - x - \rho (h-\gamma )}{(1-\rho ^2)^{1/2}} \right) \\&= \phi \left( \frac{b(h) - \rho (h-\gamma ) + x }{(1-\rho ^2)^{1/2}} \right) + \phi \left( \frac{- \big (b(h) - \rho (h-\gamma ) \big ) + x}{(1-\rho ^2)^{1/2}} \right) ,\\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \text {since } \phi \text { is an even function,}\\&= \phi \left( \frac{\mu (h, \rho , \gamma ) + x }{(1-\rho ^2)^{1/2}} \right) + \phi \left( \frac{- \mu (h, \rho , \gamma ) + x}{(1-\rho ^2)^{1/2}} \right) \\&= \phi \left( \frac{|\mu (h, \rho , \gamma )| + x }{(1-\rho ^2)^{1/2}} \right) + \phi \left( \frac{- |\mu (h, \rho , \gamma )| + x}{(1-\rho ^2)^{1/2}} \right) . \end{aligned}$$

This is a decreasing function of \(x \in \big [|\mu (h, \rho , \gamma )|, \infty )\). Consequently, \(d \ell (h, \gamma ; x)/dx\) and \(d \ell (-h, \gamma ; x)/dx\) are decreasing functions of \(x \in \big [|\mu (h, \rho , \gamma )|, \infty )\) and \(x \in \big [|\mu (-h, \rho , \gamma )|, \infty )\), respectively.

Thus \(d \ell (h, \gamma _1(j); x)/dx\) is a decreasing function of \(x \in \big [|\mu (h, \rho , \gamma _1(j))|, \infty \big )\), for \(j = 1, \dots , m_1\). Therefore

$$\begin{aligned} \sum _{j=1}^{m_1} \nu _1(j)\, \phi (h-\gamma _1(j)) \frac{d\, \ell (h, \gamma _1(j); x)}{dx} \end{aligned}$$

is a decreasing function of \(x \in \Big [\underset{j = 1, \dots , m_1}{\textrm{max}} |\mu (h, \rho , \gamma _1(j)) |, \infty \Big )\). Similarly, \(d \ell (-h, \gamma _1(j); s)/ds\) is a decreasing function of \(s \in \big [|\mu (-h, \rho , \gamma _1(j))|, \infty \big )\), for \(j = 1, \dots , m_1\). Therefore

$$\begin{aligned} \sum _{j=1}^{m_1} \nu _1(j)\, \phi (h+\gamma _1(j)) \frac{d\, \ell (-h, \gamma _1(j); s)}{ds} \end{aligned}$$

is a decreasing function of \(s \in \Big [\underset{j = 1, \dots , m_1}{\textrm{max}} |\mu (-h, \rho , \gamma _1(j)) |, \infty \Big )\). Therefore \(t_2(x; h, \varvec{\gamma }, \varvec{\nu })\) is a decreasing function of \(x \in \big [x^*, \infty \big )\). \(\square \)

We use Theorem 3 to find \(\widetilde{x} < \infty \), such that \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\) for all \(x \ge \widetilde{x}\) as follows. First evaluate \(x^*\) and then \(dq(x^*; h, \varvec{\gamma }, \varvec{\nu })/dx\). If \(dq(x^*; h, \varvec{\gamma }, \varvec{\nu })/dx > 0\) then set \(\widetilde{x} = x^*\) and stop; otherwise use the \(\textsf{R}\) function \(\textsf{uniroot}\) to find the solution for \(x \in [x^*, \infty )\) of \(dq(x; h, \varvec{\gamma }, \varvec{\nu })/dx = 0\) and then set \(\widetilde{x}\) equal to this solution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabaila, P., Wijethunga, C. Confidence intervals centred on bootstrap smoothed estimators: an impossibility result. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01454-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01454-9

Keywords

Navigation