Skip to main content
Log in

Adaptive and robust experimental design for linear dynamical models using Kalman filter

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Current experimental design techniques for dynamical systems often only incorporate measurement noise, while dynamical systems also involve process noise. To construct experimental designs we need to quantify their information content. The Fisher information matrix is a popular tool to do so. Calculating the Fisher information matrix for linear dynamical systems with both process and measurement noise involves estimating the uncertain dynamical states using a Kalman filter. The Fisher information matrix, however, depends on the true but unknown model parameters. In this paper we combine two methods to solve this issue and develop a robust experimental design methodology. First, Bayesian experimental design averages the Fisher information matrix over a prior distribution of possible model parameter values. Second, adaptive experimental design allows for this information to be updated as measurements are being gathered. This updated information is then used to adapt the remainder of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anisimov VV, Fedorov VV, Leonov SL (2007) Optimal design of pharmacokinetic studies described by stochastic differential equations. In: mODa 8-advances in model-oriented design and analysis: proceedings of the 8th international workshop in model-oriented design and analysis held in Almagro, Spain, June 4–8, 2007. Springer, pp 9–16

  • Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS, vol 34. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59.1:65–98

    Article  MathSciNet  MATH  Google Scholar 

  • Cavanaugh JE, Shumway RH (1996) On computing the expected Fisher information matrix for state-space model parameters. Stat Probab Lett 26.4:347–355

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner K, Isabella V (1995) Bayesian experimental design: a review. Stat Sci 273–304

  • Chen R, Liu JS (2000) Mixture Kalman filters. J R Stat Soc Ser B (Stat Methodol) 62.3:493–508

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65.3:457–483

    Article  MathSciNet  MATH  Google Scholar 

  • Elfving G (1952) Optimum allocation in linear regression theory. Ann Math Stat 255–262

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York

    Google Scholar 

  • Fedorov VV, Leonov SL (2013) Optimal design for nonlinear response models. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Fedorov VV, Leonov SL, Vasiliev VA (2010) Pharmacokinetic studies described by stochastic differential equations: optimal design for systems with positive trajectories. In: mODa 9–advances in model-oriented design and analysis: proceedings of the 9th international workshop in model-oriented design and analysis held in Bertinoro, Italy, June 14–18, 2010. Springer, New York, pp 73–80

  • Findeisen R, Allgöwer F (2002) An introduction to nonlinear model predictive control. 21st Benelux meeting on systems and control, vol 11. Technische Universiteit Eindhoven Veldhoven Eindhoven, The Netherlands, pp 119–141

    Google Scholar 

  • Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63(19):4846–4872

  • Goodwin GC, Payne RL (1977) Dynamic system identification, experiment design and data analysis, vol 136. Academic Press, London

    MATH  Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • He J, Asma K, Peter S (2021) A Kalman particle filter for online parameter estimation with applications to affine models. Stat Inference Stoch Process 1–51

  • Hjalmarsson H (2005) From experiment design to closed-loop control. Automatica 41.3:393–438

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson SG (2014) The NLopt nonlinear-optimization package. https://nlopt.readthedocs.io/en/latest/. Accessed 31 Nov 2021

  • Kantas N, Arnaud D, Sindhu SS, Maciejowski JM (2009) An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. IFAC Proc 42(10):774–785

    Article  Google Scholar 

  • Körkel S, Kostina E, Bock HG, Schlöder JP (2004) Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes. Optim Methods Softw 19.3–4:327–338

    Article  MathSciNet  MATH  Google Scholar 

  • Kraft D (1988) A software package for sequential quadratic programming. In: Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt DFVLR-FB, pp 88–28

  • Kraft D (1994) Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Trans Math Softw 20.3:262–281

    Article  MATH  Google Scholar 

  • Lane A (2017) Adaptive designs for optimal observed fisher information. arXiv:1712.08499

  • Pintelon R, Schoukens J (2012) System identification: a frequency domain approach, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Pronzato L, Pázman A (2013) Design of experiments in nonlinear models, vol 212. Lecture notes in statistics. Springer, New York

    MATH  Google Scholar 

  • Rawlings JB, David QM, Moritz D (2017) Model predictive control: theory, computation, and design, 2nd edn. Madison Publishing, Nob Hill

    Google Scholar 

  • Revels J, Miles L, Theodore P (2016) Forward-mode automatic differentiation in Julia. arXiv:1607.07892

  • Ryan EG, Christopher CD, James MM, Anthony NP (2016) A review of modern computational algorithms for Bayesian optimal design. Int Stat Rev 84(1):128–154

    Article  MathSciNet  Google Scholar 

  • Sagnol G, Harman R (2015) Optimal designs for steady-state Kalman filters. Springer, New York

    Book  MATH  Google Scholar 

  • Särkkä S (2013) Bayesian filtering and smoothing, vol 3. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Särkkä S, Solin A (2019) Applied stochastic differential equations, vol 10. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Stojanovic V, Nedic N, Prsic D, Dubonjic L (2016) Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl Math Model 40.13–14:6676–6689

    Article  MathSciNet  MATH  Google Scholar 

  • Telen D, Houska B, Logist F, Van Derlinden E, Diehl M, Van Impe J (2013) Optimal experiment design under process noise using Riccati differential equations. J Process Control 23.4:613–629

    Article  Google Scholar 

  • Telen D, Vercammen D, Logist F, Van Impe J (2014) Robustifying optimal experiment design for nonlinear, dynamic (bio) chemical systems. Comput Chem Eng 71:415–425

    Article  Google Scholar 

  • Teymur O, Jackson G, Marina R, Chris O (2021) Optimal quantisation of probability measures using maximum mean discrepancy. In: International conference on artificial intelligence and statistics. PMLR, pp 1027–1035

  • Titterington DM (1980) Aspects of optimal design in dynamic systems. Technometrics 22.3:287–299

    Article  MathSciNet  MATH  Google Scholar 

  • Von Richard M (2014) Mathematical theory of probability and statistics. Academic Press, New York

    Google Scholar 

  • Wong W-K (1992) A unified approach to the construction of minimax designs. Biometrika 79.3:611–619

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the KU Leuven for financial support (Project C16/16/002). Author Arno Strouwen thanks the Fund for Scientific Research, Flanders (FWO), Project 1S58717N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Strouwen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strouwen, A., Nicolaï, B.M. & Goos, P. Adaptive and robust experimental design for linear dynamical models using Kalman filter. Stat Papers 64, 1209–1231 (2023). https://doi.org/10.1007/s00362-023-01438-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-023-01438-9

Keywords

Navigation