Skip to main content
Log in

A novel copula-based approach for parametric estimation of univariate time series through its covariance decay

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this note we develop a new technique for parameter estimation of univariate time series by means of a parametric copula approach. The proposed methodology is based on a relationship between a process’ covariance decay and parametric bivariate copulas associated to lagged variables. This relationship provides a way for estimating parameters that are identifiable through the process’ covariance decay, such as in long range dependent processes. We provide a rigorous asymptotic theory for the proposed estimator. We also present a Monte Carlo simulation study to asses the finite sample performance of the proposed estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beare BK (2010) Copulas and temporal dependence. Econometrica 78(1):395–410

    Article  MathSciNet  Google Scholar 

  • Beare BK (2012) Archimedean copulas and temporal dependence. Economet Theor 28(6):1165–1185

    Article  MathSciNet  Google Scholar 

  • Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent random variables modeled by vines. Ann Math Artif Intell 32(1):245–268

    Article  MathSciNet  Google Scholar 

  • Bedford T, Cooke RM (2002) Vines—a new graphical model for dependent random variables. Ann Stat 30(4):1031–1068

    Article  MathSciNet  Google Scholar 

  • Beran J (2016) On the effect of long-range dependence on extreme value copula estimation with fixed marginals. Commun Stat 45(19):5590–5618

    Article  MathSciNet  Google Scholar 

  • Borchers HW (2021) pracma: practical numerical math functions. R package version 2.3.3. https://CRAN.R-project.org/package=pracma

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bücher A, Volgushev S (2013) Empirical and sequential empirical copula processes under serial dependence. J Multivar Anal 119:61–70

    Article  MathSciNet  Google Scholar 

  • Chen X, Fan Y (2006) Estimation of copula-based semiparametric time series models. J Econ 130(2):307–335

    Article  MathSciNet  Google Scholar 

  • Chen X, Wu WB, Yi Y (2009) Efficient estimation of copula-based semiparametric Markov models. Ann Stat 37(6B):4214–4253

    Article  MathSciNet  Google Scholar 

  • Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, Hoboken

    Book  Google Scholar 

  • Darsow WF, Nguyen B, Olsen ET (1992) Copulas and Markov processes. Ill J Math 36(4):600–642

    MathSciNet  Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4(4):221–238

    Article  MathSciNet  Google Scholar 

  • Giraitis L, Surgailis D (1999) Central limit theorem for the empirical process of a linear sequence with long memory. J Stat Plan Inference 80:81–93

    Article  MathSciNet  Google Scholar 

  • Hall P, Hart JD (1990) Convergence rates in density estimation for data from infinite-order moving average processes. Probab Theory Relat Fields 87:253–274

    Article  MathSciNet  Google Scholar 

  • Härdle WK, Mungo J (2008) Value-at-risk and expected shortfall when there is long range dependence. SFB 649 Discussion Paper, 2008–006

  • Hofert M, Kojadinovic I, Maechler M, Yan J (2020) copula: multivariate dependence with copulas. R package version 1.0-1. https://CRAN.R-project.org/package=copula

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116(1):770–799

    Article  Google Scholar 

  • Ibragimov R (2009) Copula-based characterizations for higher order Markov processes. Economet Theor 25(3):819–846

    Article  MathSciNet  Google Scholar 

  • Ibragimov R, Lentzas G (2017) Copulas and long memory. Probab Surv 14:289–327

    Article  MathSciNet  Google Scholar 

  • Joe H (1997) Multivariate models and multivariate dependence concepts. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, London

    Book  Google Scholar 

  • Lagerås AN (2010) Copulas for Markovian dependence. Bernoulli 16(2):331–342

    Article  MathSciNet  Google Scholar 

  • Lee T-H, Long X (2009) Copula-based multivariate Garch model with uncorrelated dependent errors. J Econ 150(2):207–218

    Article  MathSciNet  Google Scholar 

  • Leschinski C (2019) LongMemoryTS: Long Memory Time Series. R package version 0.1.0. https://CRAN.R-project.org/package=LongMemoryTS

  • Marinucci D (2005) The empirical process for bivariate sequences with long memory. Stat Infer Stoch Process 8:205–223

    Article  MathSciNet  Google Scholar 

  • McNeil A, Frey R, Embrechts P (2010) Quantitative risk management: concepts, techniques, and tools: concepts, techniques, and tools. Princeton Series in Finance. Princeton University Press

  • Mendes BV, Kolev N (2008) How long memory in volatility affects true dependence structure. Int Rev Fin Anal 17(5):1070–1086

    Article  Google Scholar 

  • Microsoft Corporation, Weston S (2020) doParallel: Foreach Parallel Adaptor for the ’parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel

  • Nelsen R (2013) An introduction to copulas. Lecture notes in statistics, 2nd edn. Springer, New York

    Google Scholar 

  • Palma W (2007) Long-memory time series: theory and methods. Wiley series in probability and statistics. Wiley, Hoboken

    Book  Google Scholar 

  • Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Prass TS, Pumi G (2020) DCCA: detrended fluctuation and detrended cross-correlation analysis. R package version 0.1.1. https://CRAN.R-project.org/package=DCCA

  • Prass TS, Pumi G (2021) On the behavior of the DFA and DCCA in trend-stationary processes. J Multivar Anal 182:104703

    Article  MathSciNet  Google Scholar 

  • R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Robinson PM (1995) Gaussian semiparametric estimation of long range dependence. Ann Stat 23(5):1630–1661

    Article  MathSciNet  Google Scholar 

  • Shimotsu K, Phillips PCB (2005) Exact local Whittle estimation of fractional integration. Ann Stat 33(4):1890–1933

    Article  MathSciNet  Google Scholar 

  • Stute W, Schumann G (1980) A general Glivenko–Cantelli theorem for stationary sequences of random observations. Scand J Stat 7(2):102–104

    MathSciNet  Google Scholar 

Download references

Acknowledgements

T.S. Prass gratefully acknowledges the support of FAPERGS (ARD 01/2017, Processo 17/2551-0000826-0). S.R.C. Lopes’ research was partially supported by CNPq - Brazil (303453/2018-4). The constructive comments of two reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Pumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1045 KB)

Appendix 1: Mathematical proofs

Appendix 1: Mathematical proofs

Proof of Theorem 2.1:

We present the proof for the case where \(\varvec{a}\notin \textrm{int}(\Theta )\). The other cases are dealt analogously. Let \(\{\varvec{\alpha }_m\}_{m\in \mathbb {N}^*}\) be an arbitrary sequence of parameters in D such that \(\varvec{\alpha }_{m}\rightarrow \varvec{a}\) (assuming the adequate lateral limit when necessary, allowing for s coordinates to remain fixed). Applying a second order Taylor expansion in \(\varvec{\theta }_n\) around \(\varvec{a}\), apart from an \(o(\Vert \varvec{\theta }_n -\varvec{a}\Vert ^2)\) remainder, we have

$$\begin{aligned} C_{\varvec{\theta }_n}(u,v)&=\lim _{m\rightarrow \infty }\!C_{\varvec{\alpha }_m}\!(u,v)\!+\!\lim _{m\rightarrow \infty }\!\!d_{\varvec{\theta }}C_{\varvec{\alpha }_m}\!(u,v)(\varvec{\theta }_n \!-\!\varvec{a})\!+\!\frac{1}{2}(\varvec{\theta }_n \!-\!\varvec{a})'\lim _{m\rightarrow \infty }\!\!d^2_{\varvec{\theta }}C_{\varvec{\alpha }_m}\!(u,v)(\varvec{\theta }_n \!-\!\varvec{a})\nonumber \\&=uv+\sum _{i=1}^k\lim _{m\rightarrow \infty }\bigg [\frac{\partial C_{\varvec{\theta }}(u,v)}{\partial \theta _i}\bigg |_{\varvec{\theta }=\varvec{\alpha }_m}\bigg ] (\theta _n^{(i)}-a_i)+ \nonumber \\&\quad +\frac{1}{2}\sum _{i,j=1}^k\lim _{m\rightarrow \infty }\!\bigg [\frac{\partial ^2 C_{\varvec{\theta }}(u,v)}{\partial \theta _i\partial \theta _j}\bigg |_{\varvec{\theta }=\varvec{\alpha }_m} \bigg ](\theta _n^{(i)}-a_i)(\theta _n^{(j)}-a_j). \end{aligned}$$
(7)

Let \(\{X_n\}_{n\in \mathbb {N}}\) and \(\{F_n\}_{n\in \mathbb {N}}\) be as in the enunciate. Hoeffding’s lemma combined with (7) yields

$$\begin{aligned}&\mathop {\mathrm {\textrm{Cov}}}\limits (X_0,X_n)=\sum _{i=1}^k\left[ \iint _{I^2}\frac{1}{l_0(u)l_n(v)}\lim _{m\rightarrow \infty }\frac{\partial C_{\varvec{\theta }}(u,v)}{\partial \theta _i}\bigg |_{\varvec{\theta }=\varvec{\alpha }_m}dudv\right] (\theta _n^{(i)}-a_i)+\nonumber \\&\qquad +\frac{1}{2}\sum _{i,j=1}^k\bigg [\iint _{I^2}\frac{1}{l_0(u)l_n(v)}\lim _{m\rightarrow \infty }\frac{\partial ^2 C_{\varvec{\theta }}(u,v)}{\partial \theta _i\partial \theta _j}\bigg |_{\varvec{\theta }=\varvec{\alpha }_m} dudv\bigg ]\times (\theta _n^{(i)}-a_i)(\theta _n^{(j)}-a_j)\nonumber \\&\quad =\sum _{i=1}^kK_1^{(i)}(n)(\theta _n^{(i)}-a_i)+\frac{1}{2}\sum _{i,j=1}^kK_2^{(i,j)}(n)(\theta _n^{(i)}-a_i)(\theta _n^{(j)}-a_j) \sim R(n)+o\big (R(n)\big )\sim R(n), \end{aligned}$$

by the hypothesis on \(K_1^{(i)}\) and \(K_2^{(i,j)}\). \(\blacksquare \)

Proof of Lemma 4.1:

Under Framework A, there exists \(M>0\) such that \(\Big |\lim _{\theta \rightarrow a}\frac{\partial C_{\theta }(u,v)}{\partial \theta }\Big |\le M\) for all \(u,v\in I\), since it is a continuous function defined on a compact set. Now, since

$$\begin{aligned}&|{\hat{K}}_1-K_1|\nonumber \\&\quad \le \iint _{I^2}\bigg |\frac{1}{{\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(u)\big ){\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(v)\big )}-\frac{1}{F'\big (F^{(-1)}(u)\big )F'\big ( F^{(-1)}(v)\big )}\bigg |\bigg |\lim _{\theta \rightarrow a}\frac{\partial C_{\theta }(u,v)}{\partial \theta }\bigg |\,dudv,\nonumber \\&\quad \le M \iint _{I^2}\bigg |\frac{1}{{\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(u)\big ){\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(v)\big )}-\frac{1}{F'\big (F^{(-1)}(u)\big )F'\big ( F^{(-1)}(v)\big )}\bigg |\,dudv, \end{aligned}$$
(8)

given \(\varepsilon >0\), it follows from (8) that

$$\begin{aligned}&\mathbb {P}\big (|{\hat{K}}_1-K_1|>\varepsilon \big )\le \\&\quad \le \mathbb {P}\bigg (\iint _{I^2}\bigg |\frac{1}{{\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(u)\big ){\hat{F}}_n'\big ({\hat{F}}_n^{(-1)}(v)\big )}-\frac{1}{F'\big (F^{(-1)}(u)\big )F'\big (F^{(-1)}(v)\big )}\bigg |\,dudv>\frac{\varepsilon }{M}\bigg )\rightarrow 0, \end{aligned}$$

as \(n\rightarrow \infty \), by condition (a). Hence \({\hat{K}}_1\overset{\mathbb {P}}{\longrightarrow }K_1\) as desired. To complete the proof, observe that (b) \(\Rightarrow \) (a) trivially. \(\blacksquare \)

Proof of Theorem 4.1:

Under A0, \({\hat{K}}_1 \overset{\mathbb {P}}{\longrightarrow }\ K_1\), while under A1, \({\hat{\theta }}_k(n)-a\overset{\mathbb {P}}{\longrightarrow }\theta _k^0-a\in \mathbb {R}\), for all \(s \le k\le m\), as n tends to infinity, so that \(\widehat{\varvec{L}}_{s,m}(n)\overset{\mathbb {P}}{\longrightarrow }\varvec{R}_{s,m}({\varvec{\eta }}_0)\). Now, by assumption A2 \({\mathscr {D}}\) is equivalent to the usual metric in \({\mathbb {R}^{m-s+1}}\) and since \(({\mathbb {R}^{m-s+1}},{\mathscr {D}})\) is a complete metric space, it follows that,

$$\begin{aligned} {\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),\varvec{R}_{s,m}({\varvec{\eta }}_0)\big )\overset{\mathbb {P}}{\longrightarrow }0, \end{aligned}$$
(9)

as n tends to infinity. Let \(\hat{\varvec{\eta }}_{s,m}(n)\) be as in (3) and notice that, for sufficiently large n,

$$\begin{aligned} {\mathscr {D}}\big ({\varvec{R}}_{s,m}(\varvec{\eta }_0),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big )&<{\mathscr {D}}\big ({\varvec{R}}_{s,m}(\varvec{\eta }_0),\widehat{\varvec{L}}_{s,m}(n)\big )+{\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big )\nonumber \\&<\varepsilon +{\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big ), \end{aligned}$$
(10)

hence \(\lim _{n\rightarrow \infty }{\mathscr {D}}\big ({\varvec{R}}_{s,m}(\varvec{\eta }_0),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big )\le \lim _{n\rightarrow \infty }{\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big )\). By the definition of \(\hat{\varvec{\eta }}_{s,m}(n)\), given \(\delta >0\), \({\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}}_{s,m}(\hat{\varvec{\eta }}_{s,m}(n))\big )\le {\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}}_{s,m}({\varvec{\eta }})\big )\), for all \({\varvec{\eta }}\in \overline{B_\delta (\hat{\varvec{\eta }}_{s,m}(n))}\), the closed ball in \(\mathbb {R}^p\) with radius \(\delta \) centered at \(\hat{\varvec{\eta }}_{s,m}(n)\). Now, by (9), it follows that for sufficiently large n, \({\varvec{\eta }}_0\in \overline{B_\delta (\hat{\varvec{\eta }}_{s,m}(n))}\), so that

$$\begin{aligned} {{\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}_{s,m}}(\hat{\varvec{\eta }}_{s,m}(n))\big )\le {\mathscr {D}}\big (\widehat{\varvec{L}}_{s,m}(n),{\varvec{R}_{s,m}}({\varvec{\eta }}_0)\big )\overset{\mathbb {P}}{\longrightarrow }0.} \end{aligned}$$

Now, since \({\mathscr {D}}\) is a metric in \(\mathbb {R}^{m-s+1}\), by the continuity of R and by the identifiability of \({\varvec{\eta }}_0\), it follows that \(\mathbb {P}\big (\Vert \hat{\varvec{\eta }}_{s,m}(n)-{\varvec{\eta }}_0\Vert <\varepsilon \big )\longrightarrow 1\), as n tends to infinity. \(\blacksquare \)

Proof of Theorem 4.2:

Without loss of generality, we shall assume that \(a=0\). Let \(s_0=\max \{k_0,k_1\}\) and \(\Omega =\Omega _0\cap \Omega _1\) in A3 and A4 and let \(s>s_0\). Under the hypothesis, upon defining

$$\begin{aligned} {S_{s,m}(\varvec{\eta };n)=\sum _{k=0}^{m-s}\big (\widehat{\theta }_{s+k}(n)-L(s+k,\varvec{\eta })\big )^2,} \end{aligned}$$

as n tends to infinity, with probability 1

$$\begin{aligned} {\varvec{0}=\frac{\partial S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }} \bigg |_{{\widehat{\varvec{\eta }}}}=\frac{\partial S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }}\bigg |_{\varvec{\eta }_0} + \bigg (\frac{\partial ^2 S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }\partial \varvec{\eta }'}\bigg |_{\overline{\varvec{\eta }}}\bigg )(\widehat{\varvec{\eta }}-\varvec{\eta }_0),} \end{aligned}$$

for some \(\overline{\varvec{\eta }}\in \Omega \) such that \(\Vert \overline{\varvec{\eta }}-\varvec{\eta }_0\Vert \le \Vert \widehat{\varvec{\eta }}-\varvec{\eta }_0\Vert \). In order to prove the result, it suffices to show that

$$\begin{aligned} b_n\bigg (\frac{\partial S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }}\bigg |_{\varvec{\eta }_0}\bigg ){\mathop {\longrightarrow }\limits ^{d}}-2\sum _{k=0}^{m-s}\varvec{a}_{s+k} Z_{s+k} \quad \text{ and } \quad \frac{\partial ^2 S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }\partial \varvec{\eta }'}\bigg |_{\overline{\varvec{\eta }}}{\mathop {\longrightarrow }\limits ^{\mathbb {P}}}2\sum _{k=0}^{m-s} \varvec{a}_{s+k}\varvec{a}_{s+k}^\prime \end{aligned}$$
(11)

and to observe that the right hand side in the second relation in (11) is positive definite by A3. On one hand, by A3, we can write

$$\begin{aligned} {\frac{\partial S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }} = -2\sum _{k=0}^{m-s}\varvec{a}_{s+k}\big (\widehat{\theta }_{s+k}(n)-L(s+k,\varvec{\eta })\big ),} \end{aligned}$$

so that the first equation in (11) follows from A4 by multiplying both sides by \(b_{n}\) and taking the limit as n tends to infinity. On the other hand, by A3 and A4, for \(\varvec{\eta }\in \Omega \),

$$\begin{aligned} \frac{\partial ^2 S_{s,m}(\varvec{\eta };n)}{\partial \varvec{\eta }\partial \varvec{\eta }'}&=-2\sum _{k=0}^{m-s}\bigg \{\frac{\partial ^2 L(s+k,\varvec{\eta })}{\partial \varvec{\eta }\partial \varvec{\eta }'}\big (\widehat{\theta }_{s+k}(n)-L(s+k,\varvec{\eta })\big )-\varvec{a}_{s+k}\varvec{a}_{s+k}^\prime \bigg \}\nonumber \\&=2\sum _{k=0}^{m-s} \varvec{a}_{s+k}\varvec{a}_{s+k}^\prime +o_P(1), \end{aligned}$$

and the proof is complete.\(\blacksquare \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pumi, G., Prass, T.S. & Lopes, S.R.C. A novel copula-based approach for parametric estimation of univariate time series through its covariance decay. Stat Papers 65, 1041–1063 (2024). https://doi.org/10.1007/s00362-023-01418-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-023-01418-z

Keywords

Mathematics Subject Classification

Navigation