Skip to main content

Advertisement

Log in

Bounds for Gini’s mean difference based on first four moments, with some applications

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we obtain lower and upper bounds for the Gini mean difference for the case of independent and identically distributed random variables based on the information about mean, variance, skewness, and kurtosis of the distribution. We also obtain some relationships between the three dispersion measures in the general case. The established results improve some well-known bounds and inequalities. These results are then used to sharpen some inequalities concerning Gini’s index, order statistics and premium principles. Examples demonstrate that the proposed bounds perform much better than the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecher H, Beirlant J, Teugels JL (2017) Reinsurance: actuarial and statistical aspects. Wiley, Hoboken

    MATH  Google Scholar 

  • Arnold BC (1980) Distribution-free bounds on the mean of the maximum of a dependent sample. SIAM J Appl Math 38:163–167

    MathSciNet  MATH  Google Scholar 

  • Arnold BC (1985) \(P\)-norm bounds on the expectation of the maximum of a possibly dependent sample. J Multivar Anal 17:316–332

    MathSciNet  MATH  Google Scholar 

  • Arnold BC, Balakrishnan N (1989) Relations, bounds, and approximations for order statistics, vol 53. Springer, New York

    MATH  Google Scholar 

  • Arnold BC, Groeneveld RA (1979) Bounds on expectations of linear systematic statistics based on dependent samples. Ann Stat 7:220–223

    MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Balasubramanian K (1993) Equivalence of Hartley–David–Gumbel and Papathanasiou bounds and some further remarks. Stat Probab Lett 16:39–41

    MathSciNet  Google Scholar 

  • Balakrishnan N, Rao CR (eds) (1998a) Handbook of statics 16: order statistics: theory & methods. North-Holland, Amstedam

    Google Scholar 

  • Balakrishnan N, Rao CR (eds) (1998b) Handbook of statistics 17: order statistics: applications. North-Holland, Amstedam

    Google Scholar 

  • Berrebi ZM, Silber J (1987) Dispersion, asymmetry and the Gini index of inequality. Int Econ Rev 28(2):331–338

    MathSciNet  MATH  Google Scholar 

  • Blàzquez LF, Salamanca-Miño B (1999) On Terrel’s characterization of uniform distribution. Stat Pap 40:335–342

    MATH  Google Scholar 

  • Bobkov SG (1999) Isoperimetric and analytic inequalities for log-concave probability measures. Ann Probab 27(4):1903–1921

    MathSciNet  MATH  Google Scholar 

  • Cerone P, Dragomir SS (2005) Bounds for the Gini mean difference via the Sonin identity. Comput Math Appl 50:599–609

    MathSciNet  MATH  Google Scholar 

  • Cerone P, Dragomir SS (2007) Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I). Appl Math Lett 20:782–789

    MathSciNet  MATH  Google Scholar 

  • Chattopadhyay B, De SK (2016) Estimation of Gini index within pre-specified error bound. Econometrics 4:30

    Google Scholar 

  • Dang X, Sang H, Weatherall L (2019) Gini covariance matrix and its affine equivariant version. Stat Pap 60(3):291–316

    MathSciNet  MATH  Google Scholar 

  • David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Denneberg D (1990) Premium calculation: why standard deviation should be replaced by absolute deviation. ASTIN Bull 20:181–190

    Google Scholar 

  • Dorfman R (1979) A formula for the Gini coefficient. Rev Econ Stat 61(1):146–149

    MathSciNet  Google Scholar 

  • Eisenberg B (2015) The multivariate Gini ratio. Stat Probab Lett 96:292–298

    MathSciNet  MATH  Google Scholar 

  • Furman E, Wang R, Zitikis R (2017) Gini-type measures of risk and variability: Gini shortfall, capital allocation and heavy-tailed risks. J Bank Financ 83:70–84

    Google Scholar 

  • Furman E, Kye Y, Su J (2019) Computing the Gini index: a note. Econ Lett 185:108753

    MathSciNet  MATH  Google Scholar 

  • Gastwirth J (1972) The estimation of the Lorenz curve and Gini index. Rev Econ Stat 54:306–316

    MathSciNet  Google Scholar 

  • Gastwirth JL, Glauberman M (1976) The interpolation of the Lorenz curve and Gini index from grouped data. Econometrica 44:479–483

    MathSciNet  MATH  Google Scholar 

  • Gini C (1912) Variabilitá e Metabilitá, contributo allo studia della distribuzioni e relationi statistiche. Studi Econ-Gicenitrici dell’Univ. di Coglani 3:1–158

    Google Scholar 

  • Giorgi GM, Gigliarano C (2017) The Gini concentration index: a review of the inference literature. J Econ Surv 31:1130–1148

    Google Scholar 

  • Goovaerts MJ, De Vijlder FE, Haezendonck J (1984) Insurance premiums: theory and applications. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Gumbel EJ (1954) The maxima of the mean largest value and of the range. Ann Math Stat 25:76–84

    MathSciNet  MATH  Google Scholar 

  • Hardy GH, Littlewood JE, Polya G (1952) Inequalities, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hartley HO, David HA (1954) Universal bounds for mean range and extreme observation. Ann Math Stat 25:85–99

    MathSciNet  MATH  Google Scholar 

  • Haye RL, Zizler P (2019) The Gini mean difference and variance. Metron 77:43–52

    MathSciNet  MATH  Google Scholar 

  • Hildebrand DK (1971) Kurtosis measures bimodality? Am Stat 25(1):42–43

    Google Scholar 

  • Hu TZ, Chen H (2020) On a family of coherent measures of variability. Insur Math Econ 95:173–182

    MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions-volume 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kaas R, Goovaerts MJ, Dhaene J, Denuit M (2008) Modern actuarial risk theory. Springer, Berlin

    MATH  Google Scholar 

  • Kendall MG, Stuart A (1963) The advanced theory of statistics, vol I. Macmillan Publishing, New York

    MATH  Google Scholar 

  • Liang X, Wang R, Young R (2022) Optimal insurance to maximize RDEU under adistortion–deviation premium principle. Insur Math Econ 104:35–59

    MATH  Google Scholar 

  • Masaki Y, Hanasaki N, Takahashi K, Hijioka Y (2014) Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resour Res 50:4054–4078

    Google Scholar 

  • Mitrinović DS, Pečarić JE, Fink AM (1993) Classical and new inequahties and analysis. Kluwer Academic, Dordrecht

    Google Scholar 

  • Moors JJA (1986) The meaning of kurtosis: Darlington reexamined. Am Stat 40:283–284

    Google Scholar 

  • Papathanasiou V (1990) Some characterizations of distributions based on order statistics. Stat Probab Lett 9:145–147

    MathSciNet  MATH  Google Scholar 

  • Sen PK (1986) The Gini coefficient and poverty indexes: some reconciliations. J Am Stat Assoc 81:1050–1057

    MathSciNet  MATH  Google Scholar 

  • Soares TC, Fernandes EA, Toyoshima SH (2018) The CO2 emission Gini index and the environmental efficiency: an analysis for 60 leading world economies. Economia 19:266–277

    Google Scholar 

  • Wang Q, Wang R, Wei Y (2020) Distortion riskmetrics on general spaces. ASTIN Bull 50(3):827–851

    MathSciNet  MATH  Google Scholar 

  • Xu K (2007) \(U\)-statistics and their asymptotic results for some inequality and poverty measures. Economet Rev 26(5):567–577

    MathSciNet  MATH  Google Scholar 

  • Yitzhaki S, Schechtman E (2013) The Gini methodology—a primer on a statistical methodology. Springer, New York

    MATH  Google Scholar 

  • Young VR (2014) Premium principles. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Werner G. Müller, the Editor-in-Chief, and the two anonymous referees for their helpful comments and suggestions on an earlier version of this manuscript which led to this improved version. This research was supported by the National Natural Science Foundation of China (No. 12071251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuancun Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the convenience of readers and for making the paper self-contained, we list the following inequalities.

Inequality 105 in Hardy et al. (1952): If \(\psi \) and \(\chi \) are continuous, positive, and strictly monotonic, then \(\psi ^{-1}\{\psi (\sum a)\}\ge \chi ^{-1}\{\chi (\sum a)\}\) whenever (1) \(\psi \) and \(\chi \) vary in opposite directions, or (2) \(\psi \) and \(\chi \) vary in the same direction and \(\chi /\psi \) is monotonic.

Grüss inequality (Cerone and Dragomir (2007)): If g and h are integrable on [ab] and \(m\le g(x)\le M, n\le h(x)\le N\) for \(a.e.\; x\in [a,b]\), then

$$\begin{aligned} \left| \frac{1}{b-a}\int _a^b g(x)h(x)dx-\frac{1}{b-a}\int _a^b g(x)dx\cdot \frac{1}{b-a}\int _a^b h(x)dx\right| \le \frac{1}{4}(M-m)(N-n). \end{aligned}$$

Sonin identity (Mitrinović et al. (1993), p. 246): If g and h are Lebesgue integrable on [ab], \(\gamma \in \mathbb {R}\), then

$$\begin{aligned}{} & {} \frac{1}{b-a}\int _a^b g(x)h(x)dx-\frac{1}{b-a}\int _a^b g(x)dx\cdot \frac{1}{b-a}\int _a^b h(x)dx \\{} & {} \quad = \frac{1}{b-a}\int _a^b \left( h(x)-\frac{1}{b-a} \int _a^b h(t)dt\right) (g(x)-\gamma )dx. \end{aligned}$$

Korkine identity (Mitrinović et al. (1993), p. 242): If g and h are Lebesgue integrable on [ab], then

$$\begin{aligned}{} & {} \frac{1}{b-a}\int _a^b g(x)h(x)dx-\frac{1}{b-a}\int _a^b g(x)dx\cdot \frac{1}{b-a}\int _a^b h(x)dx \\{} & {} \quad = \frac{1}{2(b-a)^2}\int _a^b\int _a^b(h(x)-h(y))(g(x)-g(y))dxdy. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Balakrishnan, N. & Yin, C. Bounds for Gini’s mean difference based on first four moments, with some applications. Stat Papers 64, 2081–2100 (2023). https://doi.org/10.1007/s00362-022-01374-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01374-0

Keywords

Navigation