Skip to main content
Log in

Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity’s evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abais JM, Xia M, Zhang Y, Boini KM, Li P-L (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22(13):1111–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdulah DM, Hassan AB (2020) Relation of dietary factors with infection and mortality rates of COVID-19 across the World. J Nutr Health Aging 24(9):1011–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal SK, Marshall GD Jr (2001) Stress effects on immunity and its application to clinical immunology. Clin Exper Allergy 31(1):25–31

    Article  CAS  Google Scholar 

  • Ahlers LRH, Trammell CE, Carrell GF, Mackinnon S, Torrevillas BK, Chow CY, Luckhart S, Goodman AG (2019) Insulin potentiates JAK/STAT signaling to broadly inhibit flavivirus replication in insect vectors. Cell Rep 29(7):1946-1960.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-MTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander DE, Leib DA (2008) Xenophagy in herpes simplex virus replication and pathogenesis. Autophagy 4(1):101–103

    Article  PubMed  Google Scholar 

  • Alwarawrah Y, Kiernan K, MacIver NJ (2018) Changes in nutritional status impact immune cell metabolism and function. Front Immunol 9(May):1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammanathan V, Mishra P, Chavalmane AK, Muthusamy S, Jadhav V, Siddamadappa C, Manjithaya R (2020) Restriction of intracellular salmonella replication by restoring TFEB-mediated xenophagy. Autophagy 16(9):1584–1597

    Article  CAS  PubMed  Google Scholar 

  • Arts RJW, Novakovic B, ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24(6):807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayers JB, Coatsworth HG, Kang S, Dinglasan RR, Zhou L (2021) Clustered rapid induction of apoptosis limits ZIKV and DENV-2 proliferation in the midguts of aedes aegypti. Commun Biol 4(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azar SR, Campos RK, Yun R, Strange T, Rossi SL, Hanley KA, Vasilakis N, Weaver SC (2022) Aedes aegypti shows increased susceptibility to zika virus via both in vitro and in vivo models of type II diabetes. Viruses. https://doi.org/10.3390/v14040665

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker BR, Taxman DJ, Ting J-Y (2011) Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 23(5):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barletta AB, Ferreira LR, Alves MC, Nascimento Silva L, Sim S, Dimopoulos G, Liechocki S, Maya-Monteiro CM, Ferreira MH, Sorgine. (2016) Emerging role of lipid droplets in aedes aegypti immune response against bacteria and dengue virus. Sci Rep 6(1):19928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barletta ABF, Trisnadi N, Ramirez JL, Barillas-Mury C (2019) Mosquito midgut prostaglandin release establishes systemic immune priming. iScience. 19:54–62. https://doi.org/10.1016/j.isci.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG (2020) M. Tuberculosis infection of human IPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci 134(5):252973

    Article  Google Scholar 

  • Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls salmonella infection in response to damage to the salmonella-containing vacuole. J Biol Chem 281(16):11374–11383

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging drosophila gut. Cell Stem Cell 3(4):442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackney DE (2017) Implications of autophagy on arbovirus infection of mosquitoes. Curr Opin Insect Sci 22:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198(1):169–184

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17(10):839–849

    Article  CAS  PubMed  Google Scholar 

  • Chai Q, Wang X, Qiang L, Zhang Y, Ge P, Zhe Lu, Zhong Y et al (2019) A mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun 10(1):1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Perrimon N (2021) What fuels the fly: energy metabolism in drosophila and its application to the study of obesity and diabetes. Sci Adv. https://doi.org/10.1126/sciadv.abg4336

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen T-Y, Smartt CT (2021) Activation of the autophagy pathway decreases dengue virus infection in aedes aegypti cells. Parasit Vectors 14(1):551

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ et al (2014) MTOR- and HIF-1 -mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684–1250684

    Article  PubMed  PubMed Central  Google Scholar 

  • Claudio F, Franceschi ZA, Garagnani P, Giuliani C (2016) Inflammaging and its role in ageing and age-related diseases. Evolutionary thinking in medicine. Springer International Publishing, Cham, pp 259–275

    Google Scholar 

  • Cooper DM, Mitchell-Foster K (2011) Death for survival: what do we know about innate immunity and cell death in insects? Invertebr Surviv J 8(2):162–172

    Google Scholar 

  • Cotter SC, Reavey CE, Tummala Y, Randall JL, Holdbrook R, Ponton F, Simpson SJ, Smith JA, Wilson K (2019) Diet modulates the relationship between immune gene expression and functional immune responses. Insect Biochem Mol Biol 109:128–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva M, de Siqueira Moraes Ribeiro R (2018) Autophagy and its interaction with intracellular bacterial pathogens. Front Immunol. https://doi.org/10.3389/fimmu.2018.00935

    Article  PubMed  PubMed Central  Google Scholar 

  • de Marco Z, Frič J (2022) Train the trainer: hematopoietic stem cell control of trained immunity. Front Immunol 13:827250

    Article  Google Scholar 

  • Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Roux G, Lang RA (1997) Macrophages induce apoptosis in normal cells in vivo. Development 124(18):3633–3638. https://doi.org/10.1242/dev.124.18.3633

    Article  CAS  PubMed  Google Scholar 

  • Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, van Crevel R et al (2021) Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol 22(1):2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dockrell DH, Badley AD, Villacian JS, Heppelmann CJ, Algeciras A, Ziesmer S, Yagita H, Lynch DH, Roche PC, Leibson PJ, Paya CV (1998) The expression of Fas ligand by macrophages and its upregulation by human immunodeficiency virus infection. J Clin Invest 101(11):2394–2405. https://doi.org/10.1172/JCI1171.PMID:9616211;PMCID:PMC508829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5(5):480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdell AS, Cartwright IM, Kitzenberg DA, Kostelecky RE, Mahjoob O, Saeedi BJ, Welch N, Glover LE, Colgan SP (2022) Essential role for epithelial HIF-mediated xenophagy in control of salmonella infection and dissemination. Cell Rep 40(13):111409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler AL, Pietri JE, Pakpour N, Hauck E, Wang B, Glennon EK, Georgis M, Riehle MA, Luckhart S (2014) Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathog 10(6):e1004231. https://doi.org/10.1371/journal.ppat.1004231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziedziech A, Theopold U (2022) Proto-pyroptosis: an ancestral origin for mammalian inflammatory cell death mechanism in drosophila melanogaster. J Mol Biol 434(4):167333

    Article  CAS  PubMed  Google Scholar 

  • Echavarria-Consuegra L, Smit JM, Reggiori F (2019) Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 9(3):190009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir SMJ, Harborth W, Lendeckel A, Yalcin KW, Tuschl T (2001) Duplexes of 21-nucleotide RNAs Mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  • Eun-Mi H, Chun-Taek O, Bae YS, Lee W-J (2005) A direct role for dual oxidase in drosophila gut immunity. Science 310(5749):847–850

    Article  Google Scholar 

  • Escoll P, Buchrieser C (2018) Metabolic reprogramming of host cells upon bacterial infection: why shift to a Warburg-like metabolism? FEBS J 285(12):2146–2160

    Article  CAS  PubMed  Google Scholar 

  • Fanucchi S, Domínguez-Andrés J, Joosten LAB, Netea MG, Mhlanga MM (2021) The intersection of epigenetics and metabolism in trained immunity. Immunity 54(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Fellous S, Lazzaro BP (2010) Larval food quality affects adult (but not larval) immune gene expression independent of effects on general condition. Mol Ecol 19(7):1462–1468

    Article  CAS  PubMed  Google Scholar 

  • Fink SL, Cookson BT (2007) Pyroptosis and host cell death responses during salmonella infection. Cell Microbiol 9(11):2562–2570

    Article  CAS  PubMed  Google Scholar 

  • Fire ASXu, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and Specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Jiaxi W, You-Tong W, Fenghe D, Chukwuemika A, Nan Y, Lijun S, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906

    Article  CAS  PubMed  Google Scholar 

  • Garaude J, Acín-Pérez R, Martínez-Cano S, Enamorado M, Ugolini M, Nistal-Villán E, Hervás-Stubbs S et al (2016) Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol 17(9):1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FM, Tyner MDW, Barletta ABF, Saha B, Yenkoidiok-Douti L, Canepa GE, Molina-Cruz A, Barillas-Mury C (2021) “Double Peroxidase and Histone Acetyltransferase AgTip60 Maintain Innate Immune Memory in Primed Mosquitoes.” In: Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2114242118.

  • Gomes FM, Silva M, Molina-Cruz A, Barillas-Mury C (2022) Molecular mechanisms of insect immune memory and pathogen transmission. PLoS Pathog 18(12):e1010939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves RLS, Jose HM, Oliveira GA, Oliveira JF, Andersen MF, Oliveira PL, Oliveira CB-M (2012) Mitochondrial reactive oxygen species modulate mosquito susceptibility to plasmodium infection. PLoS ONE. https://doi.org/10.1371/journal.pone.0041083

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto A, Okado K, Martins N, Cai H, Barbier V, Lamiable O, Troxler L et al (2018) The kinase IKKβ regulates a STING- and NF-ΚB-dependent antiviral response pathway in drosophila. Immunity 49(2):225-234.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gritsenko A, Green JP, Brough D, Lopez-Castejon G (2020) Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 55(October):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Karpac J, Tran SL, Jasper H (2014) PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156(1–2):109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy Is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  CAS  PubMed  Google Scholar 

  • Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between anopheles stephensi midgut cells and plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19(22):6030–6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannes FM, Voges VC, Braun LC, Sonnenberg J, Schwarz D, Körner H, Reinecke H, Sohrabi Y (2022) LXRα regulates OxLDL-induced trained immunity in macrophages. Int J Mol Sci. https://doi.org/10.3390/ijms23116166

    Article  Google Scholar 

  • Harris J, Lang T, Thomas JPW, Sukkar MB, Nabar NR, Kehrl JH (2017) Autophagy and Inflammasomes. Mol Immunol 86:10–15

    Article  CAS  PubMed  Google Scholar 

  • Harsh S, Heryanto C, Eleftherianos I (2019) Intestinal lipid droplets as novel mediators of host-pathogen interaction in drosophila. Biol Open 8(7):039040

    Google Scholar 

  • He W-T, Wan H, Lichen Hu, Chen P, Wang X, Huang Z, Yang Z-H, Zhong C-Q, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Hrithik MT, Shahmohammadi N, Jin G, Lee DH, Singh N, Vik A, Hammock BD, Kim Y (2024) Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. Insect Biochem Mol Biol 168:104104. https://doi.org/10.1016/j.ibmb.2024.104104

    Article  CAS  Google Scholar 

  • Hizawa K, Sasaki T, Arimura N (2023) A comparative overview of DSCAM and its multifunctional roles in Drosophila and vertebrates. Neurosci Res S0168–0102(23):00222–00225. https://doi.org/10.1016/j.neures.2023.12.005

    Article  CAS  Google Scholar 

  • Hooftman A, Angiari S, Hester S, Corcoran SE, Runtsch MC, Ling C, Ruzek MC et al (2020) The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab 32(3):468-478.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, McGettrick AF, Yin M et al (2023) Macrophage fumarate hydratase restrains MtRNA-mediated interferon production. Nature 615(7952):490–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horak P, Crawford AR, Vadysirisack DD, Nash ZM, Phillip DeYoung M, Sgroi D, Ellisen LW (2010) Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 107(10):4675–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen JAMJL (2021) Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int J Mol Sci 22(15):7797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehan C, Sabarly C, Rigaud T, Moret Y (2022) Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, tenebrio molitor. Sci Rep 12(1):19747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiaxi W, Sun L, Chen X, Fenghe D, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830

    Article  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang M-A, Mott TM, Tapley EC, Lewis EE, Luckhart S (2008) Insulin regulates aging and oxidative stress in anopheles stephensi. J Exp Biol 211(Pt 5):741–748

    Article  CAS  PubMed  Google Scholar 

  • Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X, Barnes TM et al (2019) AMPK directly Activates MTORC2 to promote cell survival during acute energetic stress. Sci Signal 12(585):eaav3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke R, Qicao Xu, Li C, Luo L, Huang D (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42(4):384–392

    Article  CAS  PubMed  Google Scholar 

  • Kelly B, O’Neill LAJ (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25(7):771–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Keshavarz M, Jo YH, Edosa TT, Han YS (2020) Two roles for the tenebrio molitor relish in the regulation of antimicrobial peptides and autophagy-related genes in response to listeria monocytogenes. InSects 11(3):188

    Article  PubMed  PubMed Central  Google Scholar 

  • Killian MS (2012) Dual role of autophagy in HIV-1 replication and pathogenesis. AIDS Res Ther 9(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 17(1):1–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Krautz R, Arefin B, Theopold U (2014) Damage signals in the insect immune response. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00342

    Article  PubMed  PubMed Central  Google Scholar 

  • Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM et al (2019) Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. ELife8. https://doi.org/10.7554/eLife.50414

    Article  Google Scholar 

  • Krycer JR, Quek L-E, Francis D, Zadoorian A, Weiss FC, Cooke KC, Nelson ME et al (2020) Insulin signaling requires glucose to promote lipid anabolism in adipocytes. J Biol Chem 295(38):13250–13266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19(6):359–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Herbert PE, Warrens AN (2005) An introduction to death receptors in apoptosis. Int J Surg 3(4):268–277

    Article  CAS  PubMed  Google Scholar 

  • Kuo C-J, Hansen M, Troemel E (2018) Autophagy and innate immunity: insights from invertebrate model organisms. Autophagy 14(2):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriakose T, Kanneganti T-D (2019) “Pyroptosis in antiviral immunity. In: current topics in microbiology and immunology current. Topics in microbiology and immunology. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Lancaster GI, Febbraio MA (2014) The immunomodulating role of exercise in metabolic disease. Trends Immunol 35(6):262–269

    Article  CAS  PubMed  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavaré S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in drosophila melanogaster. Proc Natl Acad Sci USA 101(20):7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau M-T, Manion J, Littleboy JB, Oyston L, Khuong TM, Wang Q-P, Nguyen DT, Hesselson D, Seymour JE, Gregory Neely G (2019) Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun. https://doi.org/10.1038/s41467-019-09681-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Leavens KF, Birnbaum MJ (2011) Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 46(3):200–215

    Article  CAS  PubMed  Google Scholar 

  • Lee AH, Dixit VD (2020) Dietary regulation of immunity. Immunity 53(3):510–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KPJS, Cory K, Wilson DR, Simpson SJ (2006) Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc Biol Sci 273(1588):823–829

    CAS  PubMed  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ, Robert Brooks J, Ballard WO, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105(7):2498–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in drosophila adults. Cell 86(6):973–983

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XJ, Yang L, Li D, Zhu YT, Wang Q, Li WW (2018) Pathogen-specific binding soluble down syndrome cell adhesion molecule (dscam) regulates phagocytosis via membrane-bound dscam in crab. Front Immunol 18(9):801. https://doi.org/10.3389/fimmu.2018.00801

    Article  CAS  Google Scholar 

  • Li H, Jin XK, Zhou KM, Zhao H, Zhao YH, Wang Q, Li WW (2021) Down syndrome cell adhesion molecule triggers membrane-to-nucleus signaling-regulated hemocyte proliferation against bacterial infection in invertebrates. J Immunol 207(9):2265–2277. https://doi.org/10.4049/jimmunol.2100575

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Zhang B, Lin X, Xiuxiu F, An Y, Zou Y, Wang J-X, Wang Z, Tao Y (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-022-01151-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Li C, Zhang W, Wang Y, Qian P, Huang H (2023) Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-023-01502-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao S-T, Han C, Ding-Qiao X, Xiao-Wei F, Wang J-S, Kong L-Y (2019) 4-Octyl Itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. https://doi.org/10.1038/s41467-019-13078-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Linke M, Fritsch SD, Sukhbaatar N, Hengstschläger M, Weichhart T (2017) MTORC1 and MTORC2 as regulators of cell metabolism in immunity. FEBS Lett 591(19):3089–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K-Y, Yang H, Peng J-X, Hong H-Z (2012) Cytochrome c and insect cell apoptosis. Insect Sci 19(1):30–40

    Article  Google Scholar 

  • Luckhart S, Riehle MA (2017) Conservation and convergence of immune signaling pathways with mitochondrial regulation in vector arthropod physiology, vol 1. Elsevier Inc, New York

    Google Scholar 

  • Luckhart S, Riehle MA (2020) Midgut mitochondrial function as a gatekeeper for malaria parasite infection and development in the mosquito host. Front Cell Infect Microbiol 10:593159. https://doi.org/10.3389/fcimb.2020.593159

    Article  PubMed  PubMed Central  Google Scholar 

  • Luckhart S, Crampton AL, Zamora R, Lieber MJ, Dos Santos PC, Peterson TML, Emmith N, Lim J, Wink DA, Vodovotz Y (2003) Mammalian transforming growth factor beta1 activated after ingestion by anopheles stephensi modulates mosquito immunity. Infect Immun 71(6):3000–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luckhart S, Giulivi C, Drexler AL, Antonova-Koch Y, Sakaguchi D, Napoli E, Wong S, Price MS, Eigenheer R, Phinney BS, Pakpour N, Pietri JE, Cheung K, Georgis M, Riehle M (2013) Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 9(2):e1003180. https://doi.org/10.1371/journal.ppat.1003180

    Article  PubMed  PubMed Central  Google Scholar 

  • Mans BJ (2011) Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J Innate Immun 3(1):41–51. https://doi.org/10.1159/000321599

    Article  PubMed  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457-470.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Moghadam ZM, Henneke P, Kolter J (2021) From flies to men: ROS and the NADPH oxidase in phagocytes. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.628991

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-García M, Recio-Tótoro B, Claudio-Piedras F, Lanz-Mendoza H (2014) Injury and immune response: applying the danger theory to mosquitoes. Front Plant Sci 5:451

    PubMed  PubMed Central  Google Scholar 

  • Morris DH, Yip CK, Shi Yi, Chait BT, Wang QJ (2015) Beclin 1-Vps34 complex architecture: understanding the nuts and bolts of therapeutic targets. Front Biol 10(5):398–426

    Article  CAS  Google Scholar 

  • Moy RH, Cherry S (2013) Antimicrobial autophagy: a conserved innate immune response in drosophila. J Innate Immun 5(5):444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Myers AL, Harris CM, Choe K-M, Brennan CA (2018) Inflammatory production of reactive oxygen species by drosophila hemocytes activates cellular immune defenses. Biochem Biophys Res Commun 505(3):726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Ohsawa S, Igaki T (2014) Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in drosophila. Nat Commun 5(1):5264

    Article  CAS  PubMed  Google Scholar 

  • Nandy A, Lin L, Velentzas PD, Wu LP, Baehrecke EH, Silverman N (2018) The NF-ΚB factor relish regulates Atg1 expression and controls autophagy. Cell Rep 25(8):2110-2120.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini C, Moreau J-F, Gensous N, Ravaioli F, Garagnani P, Bacalini MG (2018) The epigenetics of inflammaging: the contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. Semin Immunol 40:49–60

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng TH, Kurtz J (2020) Dscam in immunity: a question of diversity in insects and crustaceans. Dev Comp Immunol 105:103539. https://doi.org/10.1016/j.dci.2019.103539

    Article  CAS  PubMed  Google Scholar 

  • Nicolas B, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  Google Scholar 

  • Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R (2023) Trained immunity—basic concepts and contributions to immunopathology. Nat Rev Nephrol 19(1):23–37

    Article  PubMed  Google Scholar 

  • Ohba M, Aizawa K (1979) In vivo insect hemocyte destruction by UV-irradiated chilo iridescent virus. J Invertebr Pathol 34(1):32–40

    Article  Google Scholar 

  • Otto AM (2016) Warburg effect(s)-a biographical sketch of otto warburg and his impacts on tumor metabolism. Cancer Metab 4(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakpour N, Corby-Harris V, Green GP, Smithers HM, Cheung KW, Riehle MA, Luckhart S (2012) Ingested human insulin inhibits the mosquito NF-ΚB-dependent immune response to plasmodium falciparum. Infect Immun 80(6):2141–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S (2013) The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microb Infect Institut Pasteur 15(3):243–254

    Article  CAS  Google Scholar 

  • Palsson-McDermott EM, O’Neill LAJ (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35(11):965–973

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Picard E, Bueno V, Verschoor CP, Ostrand-Rosenberg S (2021) MDSCs, ageing and inflammageing. Cell Immunol 362(104297):104297

    Article  CAS  PubMed  Google Scholar 

  • Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietri JE, Pakpour N, Napoli E, Song G, Pietri E, Potts R, Cheung KW et al (2016) Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 473(20):3487–3503

    Article  PubMed  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted drosophila melanogaster. Current Biology: CB 12(9):712–723

    Article  CAS  PubMed  Google Scholar 

  • Ponton F, Morimoto J, Robinson K, Kumar SS, Cotter SC, Wilson K, Simpson SJ (2020) Macronutrients modulate survival to infection and immunity in drosophila. J Anim Ecol 89(2):460–470

    Article  PubMed  Google Scholar 

  • Rai P, Webb EM, Kang L, Weger-Lucarelli J (2023) Insulin reduces the transmission potential of chikungunya virus and activates the toll pathway in Aedes Aegypti mosquitoes. Insect Mol Biol. https://doi.org/10.1111/imb.12863

    Article  PubMed  Google Scholar 

  • Ratcliffe NA, Gagen SJ (1976) Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in galleria mellonella and pieris brassicae larvae. J Invertebr Pathol 28(3):373–382

    Article  Google Scholar 

  • Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during drosophila aging without life-span trade-off. Cell Metab 6(2):144–152

    Article  CAS  PubMed  Google Scholar 

  • Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109(52):21528–21533. https://doi.org/10.1073/pnas.1215849110

    Article  PubMed  PubMed Central  Google Scholar 

  • Riksen NP, Netea MG (2021) Immunometabolic control of trained immunity. Mol Aspects Med 77(100897):100897

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in anopheles gambiae mosquitoes. Science 329(5997):1353–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang B-G, Satoh T, Omori H et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456(7219):264–268

    Article  CAS  PubMed  Google Scholar 

  • Sasai M, Yamamoto M (2019) Innate, adaptive, and cell-autonomous immunity against toxoplasma gondii infection. Exp Mol Med 51(12):1–10

    Article  CAS  PubMed  Google Scholar 

  • Seroude L, Brummel T, Kapahi P, Benzer S (2002) Spatio-temporal analysis of gene expression during aging in drosophila melanogaster. Aging Cell 1(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Shekhova E (2020) Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog 16(5):e1008470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12(7):226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva RC, Costa M, Ribeiro JS, Duarte GP, da Silva L, da Costa J, Travassos LH (2022) Autophagy modulators in coronavirus diseases: a double strike in viral burden and inflammation. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.845368

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva RCMC, Vasconcelos LR, Travassos LH (2022) The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 80(4):609–631. https://doi.org/10.1007/s12013-022-01087-z

    Article  CAS  PubMed  Google Scholar 

  • Sjöström J, Bergh J (2001) How apoptosis is regulated, and what goes wrong in cancer. BMJ 322(7301):1538–1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohail A, Iqbal AA, Sahini N, Chen F, Tantawy M, Waqas SFH, Winterhoff M et al (2022) Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog 18(1):e1010219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24(5):331–341

    Article  CAS  PubMed  Google Scholar 

  • Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G (2022) Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: focus on MTOR and AMPK signaling networks. Pharm (basel, Switzerland) 15(8):912

    CAS  Google Scholar 

  • Srivastava A, Mannam P (2015) Warburg revisited: lessons for innate immunity and sepsis. Front Physiol 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Su HC, Lenardo MJ (2008) Genetic defects of apoptosis and primary immunodeficiency. Immunol Allergy Clin North Am 28(2):329–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramani S, Malhotra V (2013) Non-autophagic roles of autophagy-related proteins. EMBO Rep 14(2):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Xue Li, Li Y, Cui G, Sun R, Meiying Hu, Zhong G (2021) Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pestic Biochem Physiol 173(104801):104801

    Article  CAS  PubMed  Google Scholar 

  • Taha C, Klip A (1999) The insulin signaling pathway. J Membr Biol 169(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannahill GMAM, Curtis J, Adamik EM, Palsson-McDermott AF, McGettrick G, Goel CF et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MA, Ward B, Schatzle JD, Bennett M (2002) Perforin- and Fas-dependent mechanisms of natural killer cell-mediated rejection of incompatible bone marrow cell grafts. Eur J Immunol 32(3):793–799. https://doi.org/10.1002/1521-4141(200203)32:3%3c793::AID-IMMU793%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Unckless RL, Rottschaefer SM, Lazzaro BP (2015) The complex contributions of genetics and nutrition to immunity in drosophila melanogaster. PLoS Genet. https://doi.org/10.1371/journal.pgen.1005030

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaupel P, Multhoff G (2021) Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol 599(6):1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Hawkins CJ, Yoo SJ, Müller HA, Hay BA (1999) The drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Huen SC, Luan HH, Shuang Yu, Zhang C, Gallezot J-D, Booth CJ, Medzhitov R (2016) Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166(6):1512-1525.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Y, Jing Pan L, Gan JX (2023) Ferroptosis, necroptosis, and pyroptosis in cancer: crucial cell death types in radiotherapy and post-radiotherapy immune activation. Radiother Oncol 184(109689):109689

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1925) über den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4(12):534–536

    Article  CAS  Google Scholar 

  • Weng S-C, Tsao P-N, Shiao S-H (2021) Blood glucose promotes dengue virus infection in the mosquito aedes aegypti. Parasit Vectors 14(1):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Zhang S, Mizushima N (2023) Autophagy genes in biology and disease. Nat Rev Genet 24(6):382–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H et al (2008) Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 9(8):908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarbro JR, Russell S, Pence BD (2020) Macrophage immunometabolism and inflammaging: roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism. https://doi.org/10.20900/immunometab20200026

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SJ, Huh JR, Muro I, Hong Y, Wang L, Wang SL, Renny Feldman RM, Clem RJ (2002) Hid, Rpr and grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Cho B, Lee D, Kim H, Shim J, Nam JW (2023) Molecular traces of drosophila hemocytes reveal transcriptomic conservation with vertebrate myeloid cells. PLoS Genet 19(12):e1011077. https://doi.org/10.1371/journal.pgen.1011077.PMID:38113249;PMCID:PMC10763942

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Zhang G, Jin LH (2018) A high-sugar diet affects cellular and humoral immune responses in drosophila. Exp Cell Res 368(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, Morris JL, Ferguson A et al (2023) Fumarate Induces vesicular release of MtDNA to drive innate immunity. Nature 615(7952):499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerofsky M, Harel E, Silverman N, Tatar M (2005) Aging of the innate immune response in drosophila melanogaster. Aging Cell 4(2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Zhan M, Haruyoshi Yamaza Yu, Sun JS, Li H, Zou S (2007) Temporal and spatial transcriptional profiles of aging in drosophila melanogaster. Genome Res 17(8):1236–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang L, Chu Y (2019) Reactive oxygen species: the signal regulator of B cell. Free Radical Biol Med 142(October):16–22

    Article  CAS  Google Scholar 

  • Zhou X, Jiang W, Liu Z, Liu S, Liang X (2017) Virus infection and death receptor-mediated apoptosis. Viruses 9(11):316

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Huang Bo, Shi J (2016) Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target. Oncotarget 7(30):47163–47172

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Xi Y et al (2019) Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 4(12):2405–2415

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior- CAPES; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro- FAPERJ E-26/200.628/2022; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)- Brazil. This work was also supported by grants from the Instituto Serrapilheira and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Funding

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, E-26/200.628/2022, Rafael Silva, Instituto Serrapilheira, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Cardoso M. C. Silva or Fabio M. Gomes.

Ethics declarations

Ethical approval

Not applicable.

Consent statement

Not applicable.

Additional information

Communicated by Philip Withers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.C.M.C., Ramos, I.B., Travassos, L.H. et al. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B (2024). https://doi.org/10.1007/s00360-024-01549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00360-024-01549-1

Keywords

Navigation