Skip to main content
Log in

Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle4, D-Phe7]-α-melanocyte stimulating hormone; 10−6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10−7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2′)-Arg-Trp-Lys]-NH2; 10−6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10−6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive regulation in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

AGRP:

Agouti-related protein

cAMP:

Cyclic adenosine monophosphate

Fsh:

Follicle-stimulating hormone

GtH:

Gonadotropin hormones

HPG:

Hypothalamic–pituitary–gonadal

HPPS:

Hypothalamo-pituitary portal system

Ipsen 5i:

Compound 5i synthesized in Ipsen Research Laboratories

Lh:

Luteinizing hormone

MCR:

Melanocortin receptor

Mc4r:

Melanocortin-4 receptor

α-MSH:

α-melanocyte-stimulating hormone

NDP-MSH:

[Nle4, D-Phe7]-α-melanocyte-stimulating hormone

POMC:

Proopiomelanocortin

Gnrh:

Gonadotropin-releasing hormone

SHU9119:

(Ac-Nle-[Asp-His-DPhe/DNal(2′)-Arg-Trp-Lys]-NH2)

THIQ:

(N-[(3R)-1,2,3,4-tetrahydroisoquinolinium3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1 H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl]-2-oxoethylamine)

References

  • Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ (2015) Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci USA 112(31):9668–9673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso C, Carniglia L, Durand D, Gonzalez PV, Scimonelli TN, Lasaga M (2012) Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP-protein kinase A pathway. Mol Cell Endocrinol 348(1):47–54.

    Article  PubMed  Google Scholar 

  • Cerdá-Reverter JM, Ringholm A, Schiöth HB, Peter RE (2003a) Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Endocrinology 144(6):2336–2349

    Article  PubMed  Google Scholar 

  • Cerdá-Reverter JM, Schiöth HB, Peter RE (2003b) The central melanocortin system regulates food intake in goldfish. Regul Pept 115(2):101–113

    Article  PubMed  Google Scholar 

  • Chai B, Li JY, Zhang W, Newman E, Ammori J, Mulholland MW (2006) Melanocortin-4 receptor-mediated inhibition of apoptosis in immortalized hypothalamic neurons via mitogen-activated protein kinase. Peptides 27(11):2846–2857

    Article  CAS  PubMed  Google Scholar 

  • Chen HP, Deng SP, Dai ML, Zhu CH, Li GL (2016) Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus). Genet Mol Res 15(2). doi:10.4238/gmr.15027838

  • Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27(7):736–749

    Article  CAS  PubMed  Google Scholar 

  • Dores RM, Lecaude S (2005) Trends in the evolution of the proopiomelanocortin gene. Gen Comp Endocrinol 142(1–2):81–93

    Article  CAS  PubMed  Google Scholar 

  • Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C (2010) Neuroendocrine control by dopamine of teleost reproduction. J Fish Biol 76(1):129–160

    Article  CAS  PubMed  Google Scholar 

  • Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348(12):1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL (1997) Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 17(3):273–274

    Article  CAS  PubMed  Google Scholar 

  • Grieco P, Cai M, Han G, Trivedi D, Campiglia P, Novellino E, Hruby VJ (2007) Further structure-activity studies of lactam derivatives of MT-II and SHU-9119: their activity and selectivity at human melanocortin receptors 3, 4, and 5. Peptides 28(6):1191–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Ilnytska O, Argyropoulos G (2008) The role of the Agouti-related protein in energy balance regulation. Cell Mol Life Sci 65(17):2721–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhao AG, Pinelli C, D’Aniello B, Tsutsui K (2016) Gonadotropin-inhibitory hormone (GnIH) in the amphibian brain and its relationship with the gonadotropin releasing hormone (GnRH) system: An overview. Gen Comp Endocrinol 240:69–76

    Article  PubMed  Google Scholar 

  • Jangprai A, Boonanuntanasarn S, Yoshizaki G (2011) Characterization of melanocortin 4 receptor in Snakeskin Gourami and its expression in relation to daily feed intake and short-term fasting. Gen Comp Endocrinol 173(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Khong K, Kurtz SE, Sykes RL, Cone RD (2001) Expression of functional melanocortin-4 receptor in the hypothalamic GT1-1 cell line. Neuroendocrinology 74(3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Klebig ML, Wilkinson JE, Geisler JG, Woychik RP (1995) Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc Natl Acad Sci USA 92(11):4728–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klovins J, Haitina T, Fridmanis D, Kilianova Z, Kapa I, Fredriksson R, Gallo-Payet N, Schiöth HB (2004) The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs. Mol Biol Evol 21(3):563–579

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Tsuchiya K, Yamanome T, Schiöth HB, Kawauchi H, Takahashi A (2008) Food deprivation increases the expression of melanocortin-4 receptor in the liver of barfin flounder, Verasper moseri. Gen Comp Endocrinol 155(2):280–287

    Article  CAS  PubMed  Google Scholar 

  • Lampert KP, Schmidt C, Fischer P, Volff JN, Hoffmann C, Muck J, Lohse MJ, Ryan MJ, Schartl M (2010) Determination of onset of sexual maturation and mating behavior by melanocortin receptor 4 polymorphisms. Curr Biol 20(19):1729–1734

    Article  CAS  PubMed  Google Scholar 

  • Langouche L, Hersmus N, Papageorgiou A, Vankelecom H, Denef C (2004) Melanocortin peptides stimulate prolactin gene expression and prolactin accumulation in rat pituitary aggregate cell cultures. J Neuroendocrinol 16(8):695–703

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Zhang MZ, Deng SP, Chen HP, Zhu CH (2015) Effects of temperature and fish oil supplementation on ovarian development and foxl2 mRNA expression in spotted scat Scatophagus argus. J Fish Biol 86(1):248–260

    Article  CAS  PubMed  Google Scholar 

  • Li JT, Yang Z, Chen HP, Zhu CH, Deng SP, Li GL, Tao YX (2016) Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in spotted scat, Scatophagus argus. Gen Comp Endocrinol 230–231:143–152

    Article  PubMed  Google Scholar 

  • Limone P, Calvelli P, Altare F, Ajmone-Catt P, Lima T, Molinatti GM (1997) Evidence for an interaction between alpha-MSH and opioids in the regulation of gonadotropin secretion in man. J Endocrinol Invest 20(4):207–210

    Article  CAS  PubMed  Google Scholar 

  • Martin WJ, McGowan E, Cashen DE, Gantert LT, Drisko JE, Hom GJ, Nargund R, Sebhat I, Howard AD, Van der Ploeg LH, MacIntyre DE (2002) Activation of melanocortin MC(4) receptors increases erectile activity in rats ex copula. Eur J Pharmacol 454(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257(5074):1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 8(10):1298–1308

    CAS  PubMed  Google Scholar 

  • Mountjoy KG, Jenny Wu CS, Dumont LM, Wild JM (2003) Melanocortin-4 receptor messenger ribonucleic acid expression in rat cardiorespiratory, musculoskeletal, and integumentary systems. Endocrinology 144(12):5488–5496

    Article  CAS  PubMed  Google Scholar 

  • Nordheim U, Nicholson JR, Dokladny K, Dunant P, Hofbauer KG (2006) Cardiovascular responses to melanocortin 4-receptor stimulation in conscious unrestrained normotensive rats. Peptides 27(2):438–443

    Article  CAS  PubMed  Google Scholar 

  • Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335):135–138

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Chang JP, Yu KL, Wong AO, Van Goor F, Peter RE, Rivier JE (1993) Neuropeptide-Y stimulates growth hormone and gonadotropin-II secretion in the goldfish pituitary: involvement of both presynaptic and pituitary cell actions. Endocrinology 132(4):1820–1829

    CAS  PubMed  Google Scholar 

  • Poitout L, Brault V, Sackur C, Bernetière S, Camara J, Plas P, Roubert P (2007) Identification of a novel series of benzimidazoles as potent and selective antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 17(16):4464–4470

    Article  CAS  PubMed  Google Scholar 

  • Rebers FE, Bosma PT, van Dijk W, Goos HJ, Schulz RW (2000) GnRH stimulates LH release directly via inositol phosphate and indirectly via cAMP in African catfish. Am J Physiol Regul Integr Comput Physiol 278(6):R1572–R1578

    CAS  Google Scholar 

  • Ringholm A, Fredriksson R, Poliakova N, Yan YL, Postlethwait JH, Larhammar D, Schiöth HB (2002) One melanocortin 4 and two melanocortin 5 receptors from zebrafish show remarkable conservation in structure and pharmacology. J Neurochem 82(1):6–18

    Article  CAS  PubMed  Google Scholar 

  • Ringholm A, Klovins J, Fredriksson R, Poliakova N, Larson ET, Kukkonen JP, Larhammar D, Schiöth HB (2003) Presence of melanocortin (MC4) receptor in spiny dogfish suggests an ancient vertebrate origin of central melanocortin system. Eur J Biochem 270(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Sánchez E, Rubio VC, Thompson D, Metz J, Flik G, Millhauser GL, Cerdá-Reverter JM (2009) Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax). Am J Physiol Regul Integr Comp Physiol 296(5):R1293–R1306

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandrock M, Schulz A, Merkwitz C, Schöneberg T, Spanel-Borowski K, Ricken A (2009) Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice. Reprod Biol Endocrinol 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebag JA, Zhang C, Hinkle PM, Bradshaw AM, Cone RD (2013) Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 341(6143):278–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31(4):506–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao YX, Huang H (2014) Ipsen 5i is a novel potent pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. Front Endocrinol (Lausanne) 5:131

    Google Scholar 

  • Thompson IR, Ciccone NA, Xu S, Zaytseva S, Carroll RS, Kaiser UB (2013) GnRH pulse frequency-dependent stimulation of FSHβ transcription is mediated via activation of PKA and CREB. Mol Endocrinol 27(4):606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudeau VL, Spanswick D, Fraser EJ, Larivière K, Crump D, Chiu S, MacMillan M, Schulz RW (2000) The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem Cell Biol 78(3):241–259

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui K, Ubuka T, Bentley GE, Kriegsfeld LJ (2012) Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect. Gen Comp Endocrinol 177(3):305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadakkadath MS, Atwood CS (2005) The role of hypothalamic–pituitary–gonadal hormones in the normal structure and functioning of the brain. Cell Mol Life Sci 62(3):257–270

    Article  Google Scholar 

  • Van der Ploeg LH, Martin WJ, Howard AD, Nargund RP, Austin CP, Guan X, Drisko J, Cashen D, Sebhat I, Patchett AA, Figueroa DJ, DiLella AG, Connolly BM, Weinberg DH, Tan CP, Palyha OC, Pong SS, MacNeil T, Rosenblum C, Vongs A, Tang R, Yu H, Sailer AW, Fong TM, Huang C, Tota MR, Chang RS, Stearns R, Tamvakopoulos C, Christ G, Drazen DL, Spar BD, Nelson RJ, MacIntyre DE (2002) A role for the melanocortin 4 receptor in sexual function. Proc Natl Acad Sci USA 99(17):11381–11386

    Article  PubMed  PubMed Central  Google Scholar 

  • Vulliémoz NR, Xiao E, Xia-Zhang L, Wardlaw SL, Ferin M (2005) Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey. Endocrinology 146(2):784–789

    Article  PubMed  Google Scholar 

  • Ward DR, Dear FM, Ward IA, Anderson SI, Spergel DJ, Smith PA, Ebling FJ (2009) Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse. PLoS One 4(4):e5322

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanobe H, Schiöth HB, Wikberg JE, Suda T (1999) The melanocortin 4 receptor mediates leptin stimulation of luteinizing hormone and prolactin surges in steroid-primed ovariectomized rats. Biochem Biophys Res Commun 257(3):860–864

    Article  CAS  PubMed  Google Scholar 

  • Yaron Z, Gur G, Melamed P, Rosenfeld H, Levavi-Sivan B, Elizur A (2001) Regulation of gonadotropin subunit genes in tilapia. Comp Biochem Physiol B Biochem Mol Biol 129(2–3):489–502

    Article  CAS  PubMed  Google Scholar 

  • Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B (2003) Regulation of fish gonadotropins. Int Rev Cytol 225:131–185

    Article  CAS  PubMed  Google Scholar 

  • Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20(2):111–112

    Article  CAS  PubMed  Google Scholar 

  • Yeo GS, Farooqi IS, Challis BG, Jackson RS, O’Rahilly S (2000) The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. QJM 93(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lau SW, Zhang L, Ge W (2015) Disruption of zebrafish follicle-stimulating hormone receptor (Fshr) but not luteinizing hormone receptor (lhcgr) gene by talen leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 156(10):3747–3762

    Article  CAS  PubMed  Google Scholar 

  • Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165(3):438–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Zhanjiang Science and Technology Bureau (2016A03017), Natural Science Foundation of Guangdong Province (2016A030313743), Guangdong Ocean University Natural Science Research Program (2015 and 2016), Project of Provincial Key Platform and Major Scientific Research of Colleges and Universities in Guangdong (2015KTSCX058), Sail Projects of Guangdong (2014.1), Marine Fishery Science and Technology Extension Projects of Guangdong (A201408A06 and A201608B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Li Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Additional information

Communicated by H.V. Carey.

D.-N. Jiang and J.-T. Li contributed equally and should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, DN., Li, JT., Tao, YX. et al. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus . J Comp Physiol B 187, 603–612 (2017). https://doi.org/10.1007/s00360-017-1062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1062-0

Keywords

Navigation