Skip to main content
Log in

Feeding and digestive responses to fatty acid intake in two South American passerines with different food habits

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2015

Abstract

Specific fatty acids (FA) such as unsaturated (UFA) and saturated (SFA) fatty acids contained in foods are key factors in the nutritional ecology of birds. By means of a field and experimental approach, we evaluated the effect of diet on the activity of three esterases involved in FA hydrolysis; carboxylesterase (CE: 4-NPA-CE and a-NA-CE) and butyrylcholinesterase, in two South American passerines: the omnivorous rufous-collared sparrow (Zonotrichia capensis) and the granivorous common diuca-finch (Diuca diuca). The activity of the three esterases was measured in the intestines of freshly caught individuals over two distinct seasons and also after a chronic intake of a UFA-rich or SFA-rich diet in the laboratory. In turn, we assessed the feeding responses of the birds choosing amongst diets contrasting in the kind of specific FA (UFA- vs. SFA-treated diets). During summer, field CE activities (4-NPA-CE and a-NA-CE) in the small intestine were higher in the rufous-collared sparrow (25.3 ± 3.3 and 81.4 ± 10.8 µmol min−1 g tissue−1, respectively) than in the common diuca-finch (10.0 ± 3.0 and 33.9 ± 13.1 µmol min−1 g tissue−1, respectively). Two hour feeding trial test indicated that both species exhibited a clear preference for UFA-treated diets. On average, the rufous-collared sparrow consumed 0.46 g 2 h−1 of UFA-rich diets and 0.12 g 2 h−1 of SFA-rich diets. In turn, the consumption pattern of the common diuca-finch averaged 0.73 and 0.16 g 2 h−1 for UFA-rich and SFA-rich diets, respectively. After a month of dietary acclimation to UFA-rich and SFA-rich diets, both species maintained body mass irrespective of the dietary regime. Additionally, the intestinal 4-NPA-CE activity exhibited by birds fed on a UFA-rich or SFA-rich diet was higher in the rufous-collared sparrow (39.0 ± 5.3 and 44.2 ± 7.3 µmol min−1 g tissue−1, respectively) than in the common diuca-finch (13.3 ± 1.9 and 11.2 ± 1.4 µmol min−1 g tissue−1, respectively). Finally, the intestinal a-NA-CE activity exhibited by the rufous-collared sparrow was about two times higher when consuming an UFA-rich diet. Our results suggest that the rufus-collared sparrow exhibits a greater capacity for intestinal FA hydrolysis, which would allow it to better deal with fats from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alan RR, McWilliams SR (2013) Oxidative stress, circulating antioxidants, and dietary preferences in songbirds. Comp Biochem Physiol B 164:185–193

    Article  CAS  PubMed  Google Scholar 

  • Bairlein F (1991) Nutritional adaptations to fat deposition in the long-distance migratory garden warbler (Sylvia borin). Acta Congr Intern Ornithol 20:2149–2158

    Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  PubMed  Google Scholar 

  • Bell GP (1990) Birds and mammals on an insect diet: a primer on diet composition analysis in relation to ecological energetics. Stud Avian Biol 13:416–422

    Google Scholar 

  • Bewley J, Black D (1982) Physiology and biochemistry of seeds. Springer, Berlin

    Google Scholar 

  • Bozinovic F, Méndez MA (1997) Role of dietary fatty acids on energetics and torpor in the Chilean mouse-opossum Thylamys elegans. Comp Biochem Physiol A 116:101–104

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive assay of protein utilizing the principle of dye binding. Anal Biochem 772:248–264

    Article  Google Scholar 

  • Brzęk P, Kohl K, Caviedes-Vidal E, Karasov WH (2009) Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. J Exp Biol 212:1284–1293

    Article  PubMed  Google Scholar 

  • Brzęk P, Lessner KN, Caviedes-Vidal E, Karasov WH (2010) Low plasticity in digestive physiology constrains feeding ecology in diet specialist, zebra finch (Taeniopygia guttata). J Exp Biol 213:798–807

    Article  PubMed  Google Scholar 

  • Bush FM, Price JR, Townsend JI (1973) Avian hepatic esterases, pesticides and diet. Comp Biochem Physiol 44:1137–1151

    CAS  Google Scholar 

  • Caviedes-Vidal E, Afik D, Martínez del Rio C, Karasov WH (2000) Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Comp Biochem Physiol A 125:11–24

    Article  CAS  Google Scholar 

  • Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH (2007) The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc Natl Acad Sci USA 104:19132–19137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chanda SM, Mortensen SR, Moser VC, Padilla S (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo Comparison. Fund Appl Toxicol 38:148–157

    Article  CAS  Google Scholar 

  • Cueto VR, Marone L, Lopez de Casenave J (2006) Seed preferences in sparrow species of the Monte desert: implications for seed–granivore interactions. Auk 123:358–367

    Article  Google Scholar 

  • Denbow DM (2000) Gastrointestinal anatomy and physiology. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, New York, pp 299–325

    Chapter  Google Scholar 

  • di Castri F, Hajek ER (1976) Bioclimatología de Chile. Editorial Universidad Católica de Chile, Santiago

    Google Scholar 

  • Diamond JM (1993) Logic of life: the challenge of integrative physiology. In: Noble D, Boyd CAR (eds) Evolutionary physiology, pp 89–111

  • Díaz M (1996) Food choice by seed-eating birds in relation to seed chemistry. Comp Biochem Physiol A 113:239–246

    Article  Google Scholar 

  • Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E (2003) Molar absorption coefficients for the reduced Ellamn reagent: reassessment. Anal Biochem 312:224–227

    Article  CAS  PubMed  Google Scholar 

  • Finke MD (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285

    Article  CAS  Google Scholar 

  • Gl Ellman, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  • Griminger P (1986) Lipid metabolism. In: Sturkie P (ed) Avian physiology. Springer, New York, pp 345–358

    Chapter  Google Scholar 

  • Guglielmo CG, Haunerland NH, Hochachka PW, Williams TD (2002) Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am J Physiol 282:1405–1413

    Google Scholar 

  • Hargreaves M, Kiens B, Richter EA (1991) Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J Appl Physiol 70:194–197

    CAS  PubMed  Google Scholar 

  • Karasov WH, Martínez del Rio C (2007) Ecological physiology: how animals process energy, nutrients and toxins. Princeton University Press, New Jersey

    Google Scholar 

  • Khalilieh A, McCue MD, Pinshow B (2012) Physiological responses to food deprivation in the house sparrow, a species not adapted to prolonged fasting. Am J Physiol 303:551–561

    Google Scholar 

  • Klasing KC (1998) Comparative avian nutrition. CAB International, Wallingford

    Google Scholar 

  • Kohl K, Brzek P, Caviedes-Vidal E, Karasov WH (2011) Pancreatic and intestinal carbohydrases are matched to dietary starch level in wild passerines birds. Physiol Biochem Zool 84:195–203

    Article  CAS  PubMed  Google Scholar 

  • Lepczyk CA, Murray KG, Winnett-Murray K, Bartell P, Geyer E, Work T (2000) Seasonal fruit preference for lipids and sugars by American robins. Auk 117:709–717

    Article  Google Scholar 

  • Linder R (2000) Adaptive evolution of seed oils in plants: accounting for the biogeographic distribution of saturated and unsaturated fatty acids in seed oils. Am Nat 156:442–458

    Article  Google Scholar 

  • Lopez-Calleja MV (1995) Dieta de Zonotrichia capensis (Emberizidae) and Diuca diuca (Fringillidae): efecto de la variación estacional de los recursos tróficos y la riqueza de aves granívoras de Chile central. Rev Chil His Nat 68:321–331

    Google Scholar 

  • Lorenz K, Hwang YS (1986) Lipids in proso millet (Panicum miliaceum) flours and brans. Cereal Chem 63:387–390

    CAS  Google Scholar 

  • Maldonado K, van Dongen WFD, Vásquez RA, Sabat P (2012) Geographic variation in the association between exploratory behavior and physiology in rufous-collared sparrows. Physiol Biochem Zool 160:117–124

    Google Scholar 

  • Marone L, Lopez de Casenave J, Milesi FA, Cueto VR (2008) Can seed-eating birds exert top-down effects on the vegetation of the Monte desert? Oikos 117:611–619

    Article  Google Scholar 

  • Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol Zool 63:987–1011

    Google Scholar 

  • McClelland GB (2004) Fat to the fire: the regulation of lipid oxidation with exercise and environmental stress. Comp Biochem Physiol B 139:443–460

    Article  PubMed  Google Scholar 

  • McCue MD, Amitai O, Khozin-Goldberg I, McWilliams SR, Pinshow B (2009) Effect of dietary fatty acid composition on fatty acid profiles of polar and neutral lipid tissue fractions in zebra finches, Taeniopygia guttata. Comp Biochem Physiol A 154:165–172

    Article  Google Scholar 

  • McCue MD, McWilliams SR, Pinshow B (2011) Ontogeny and nutritional status influence oxidative kinetics of exogenous nutrients and whole-animal bioenergetics in zebra finches, Taeniopygia guttata. Physiol Biochem Zool 84:32–42

    Article  CAS  PubMed  Google Scholar 

  • McFarlan JT, Bonen A, Guglielmo CG (2009) Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J Exp Biol 212:2934–2940

    Article  CAS  PubMed  Google Scholar 

  • McWilliams SR, Kearney S, Karasov WH (2002) Dietary preferences of warblers for specific fatty acids in relation to nutritional requirements and digestive capabilities. J Avian Biol 33:167–174

    Article  Google Scholar 

  • McWilliams SR, Guglielmo CG, Pierce BJ, Klaassen M (2004) Flying, fasting, and feeding in birds during migration: a physiological ecology perspective. J Avian Biol 35:377–393

    Article  Google Scholar 

  • Pierce BJ, McWilliams SR, O’Connor TP, Place AR, Guglielmo CG (2004) Diet preferences for specific fatty acids and their effect on composition of fat reserves in migratory red-eyed vireos (Vireo olivaceous). Comp Biochem Physiol A 138:503–514

    Article  Google Scholar 

  • Ramirez-Otarola N, Narváez C, Sabat P (2011) Membrane-bound intestinal enzymes of passerine birds: dietary and phylogenetic correlates. J Comp Physiol B. doi:10.1007/s00360-011-0557-3

    PubMed  Google Scholar 

  • Ríos JM, Mangione AM (2010) Respuesta disuasiva del granívoro Zonotrichia capensis (Passeriformes: Emberizidae) frente a fenoles comunes en las semillas. Ecol Aust 20:215–221

    Google Scholar 

  • Ríos JM, Mangione AM, Marone L (2012a) Effects of nutritional and anti-nutritional properties of seeds on the feeding ecology of seed-eating birds of the Monte desert, Argentina. Condor 114:44–55

    Article  Google Scholar 

  • Ríos JM, Mangione AM, Marone L (2012b) Tolerance to dietary phenolics and diet breadth in three seed-eating birds: implications for graminivory. J Exp Zool A 317:425–433

    Article  Google Scholar 

  • Sabat P, Novoa FF, Bozinovic F, Martínez del Rio C (1998) Dietary flexibility and intestinal plasticity in birds: a field and laboratory study. Physiol Zool 71:226–236

    Article  CAS  PubMed  Google Scholar 

  • Sabat P, Ramirez-Otarola N, Bozinovic F, Martínez del Rio C (2013) The isotopic composition and insect content of diet predict tissue isotopic values in a South American passerine assemblage. J Comp Physiol B 183:419–430

    Article  CAS  PubMed  Google Scholar 

  • Schaefer HM, Schmidt V, Bairlein F (2003) Discrimination abilities for nutrients: which difference matters for choosy birds and why? Anim Behav 65:531–541

    Article  Google Scholar 

  • Stiles EW (1993) The influence of pulp lipids on fruit preference by birds. Vegetatio 108:227–235

    Google Scholar 

  • Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicol 8:369–384

    Article  CAS  Google Scholar 

  • Valera F, Wagner RH, Romero M, Gutiérrez JE, Rey P (2005) Dietary specialization on high protein seeds by adult and nestling serins. Condor 107:29–40

    Article  Google Scholar 

  • Van Lith H, Meijer GW, van der Wouw MJA, Den Bieman M, Van Tintelen G, Van Zutphen LFM, Beynen AC (1992) Influence of amount of dietary fat and protein on esterase-1 (ES-1) activities of plasma and small intestine in rats. Br J Nutr 67:379–390

    Article  PubMed  Google Scholar 

  • Wheelock C, Eder K, Werner I et al (2005) Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol 74:172–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zurovchak JG (1997) Nutritional role of high-lipid fruits in the diet of migrant thrushes. Ph.D. Dissertation, Rutgers University

Download references

Acknowledgments

This work is from the postdoctoral project financed by Fondo Nacional de Desarrollo Científico y Tecnológico (Chile Proyecto No. 3130429 to JM Ríos and No. 1120276 to PS). Birds were captured with permits from SAG, Chile (No. 3935/2013). All protocols were approved by the Institutional Animal Care Committee of the Universidad de Chile, where the experiments were performed. We thank Andrés Sazo and Grabiela Píriz for their help in the field and laboratory. JMR gives special thanks to Jorgelina Altamirano and Nestor Ciocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Ríos.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos, J.M., Barceló, G.F., Narváez, C. et al. Feeding and digestive responses to fatty acid intake in two South American passerines with different food habits. J Comp Physiol B 184, 729–739 (2014). https://doi.org/10.1007/s00360-014-0832-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0832-1

Keywords

Navigation