Skip to main content
Log in

Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BUN:

Blood urea nitrogen

EGP:

Endogenous glucose production

ER:

Endoplasmic reticulum

FFA:

Free fatty acids

G6P:

Glucose-6-phosphate

G6Pase:

Glucose-6-phosphatase enzyme complex

G6PC:

Catalytic subunit of glucose-6-phosphatase

GC:

Glucocorticoid

INS-R:

Insulin receptor

pINS-R:

Phosphorylated insulin receptor

SLC37A4:

Translocase subunit of glucose-6-phosphatase

SIFT:

Sorting intolerant from tolerant

TM:

Transmembrane domain

References

  • Argaud D, Kirby TL, Newgard CB, Lange AJ (1997) Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem 272:12854–12861

    Article  PubMed  CAS  Google Scholar 

  • Arion WJ, Wallin BK (1973) Kinetics of the glucose 6-phosphate-glucose exchange activity and glucose inhibition of glucose 6-phosphatase of intact and disrupted rat liver microsomes. J Biol Chem 248:2372–2379

    PubMed  CAS  Google Scholar 

  • Arion WJ, Walls HG (1982) The importance of membrane integrity in kinetic characterizations of the microsomal glucose-6-phosphatase system. J Biol Chem 257:11217–11220

    PubMed  CAS  Google Scholar 

  • Arion WJ, Lange AJ, Walls HE, Ballas LM (1980) Evidence for the participation of independent translocases for phosphate and glucose-6-phosphate in the microsomal glucose-6-phosphatase system. J Biol Chem 255:10396–10406

    PubMed  CAS  Google Scholar 

  • Ashmore J, Hastings AB, Nesbett FB (1954) The effect of diabetes and fasting on liver glucose-6-phosphatase. Proc Nat Acad Sci USA 40:673–678

    Article  PubMed  CAS  Google Scholar 

  • Ashmore J, Hastings AB, Nesbett FB, Renold AE (1956) Studies on carbohydrate metabolism in rat liver slices. VI. Hormonal factors influencing glucose-6-phosphatase. J Biol Chem 218:77–88

    PubMed  CAS  Google Scholar 

  • Bady I, Zitoun C, Guignot L, Mithieux G (2002) Activation of liver G-6-Pase in response to insulin-induced hypoglycemia or epinephrine infusion in the rat. Am J Physiol 282:E905–E910

    CAS  Google Scholar 

  • Båvenholm PN, Pigon J, Östenson C-G, Efendic S (2001) Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 50:1449–1454

    Article  PubMed  Google Scholar 

  • Beck CA, Bowen WD, Iversen S (2003) Sex differences in the seasonal patterns of energy storage and expenditure in a phocid seal. J Anim Ecol 72:280–291

    Article  Google Scholar 

  • Bennett KA, Speakman JR, Moss SEW, Pomeroy P, Fedak MA (2007) Effects of mass and body composition on fasting fuel utilisation in grey seal pups (Halichoerus grypus: Fabricius): an experimental study using supplementary feeding. J Exp Biol 210:3043–3053

    Article  PubMed  Google Scholar 

  • Borthwick EB, Houston MP, Coughtrie MWH, Burchell A (2001) The antihyperglycemic effect of estrone sulfate in genetically obese diabetic (ob/ob) mice is associated with reduced hepatic glucose-6-phosphatase. Horm Metabol Res 33:721–726

    Article  CAS  Google Scholar 

  • Broh-Kahn RH, Mirsky IA, Perisutti G, Brand J (1948) The hexosemonophosphatase system (glucose-6-phosphatase) of liver. Arch Biochem 16:87–107

    PubMed  CAS  Google Scholar 

  • Burchell A, Cain DI (1985) Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia 28:852–856

    Article  PubMed  CAS  Google Scholar 

  • Burchell A, Leakey JE (1988) Development of the rat hepatic microsomal glucose-6-phosphatase system and its glucocorticoid inducibility. Biol Neonate 54:107–115

    Article  PubMed  CAS  Google Scholar 

  • Caseras A, Meton I, Vives C, Egea M, Fernandez F, Baanante IV (2002) Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilthead sea bream (Sparus aurata). Brit J Nutr 88:607–614

    Article  PubMed  CAS  Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582

    Article  PubMed  CAS  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2005) Glucose production and substrate cycle activity in a fasting adapted animal, the northern elephant seal. J Exp Biol 208:859–868

    Article  PubMed  CAS  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2006) Glucose metabolism during lactation in a fasting animal, the northern elephant seal. Am J Physiol 291:R1129–R1137

    Article  CAS  Google Scholar 

  • Champagne CD, Houser DS, Fowler MA, Cosa DP, Crocker DE (2012) Gluconeogenesis is associated with high rate of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Physiol 303:R340–R352

    CAS  Google Scholar 

  • Chatelain F, Pegorier JP, Minassian C, Bruni N, Tarpin S, Girard J, Mithieux G (1998) Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney—in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 47:882–889

    Article  PubMed  CAS  Google Scholar 

  • Chen L-Y, Pan C-J, Shieh JJ, Chou JY (2002) Structure-function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type 1b. Hum Mol Genet 11:3199–3207

    Article  PubMed  CAS  Google Scholar 

  • Cherel Y, Le Robin J-P, Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Clore JN, Stillman J, Sugerman H (2000) Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 49:969–974

    Article  PubMed  CAS  Google Scholar 

  • Costa DP, Ortiz CL (1982) Blood chemistry homeostasis during prolonged fasting in the northern elephant seal. Am J Physiol 242:R591–R595

    PubMed  CAS  Google Scholar 

  • Daniele N, Rajas F, Payastre B, Mauco G, Zitoun C, Mithieux G (1999) Phosphatidylinositol 3-kinase translocates onto liver endoplasmic reticulum and may account for the inhibition of glucose-6-phosphatase during refeeding. J Biol Chem 274:3597–3601

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo R, Ferrannini E, Simonson DC (1989) Fasting hyperglycemia in non-insulin dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metab Clin Exp 38:387–395

    Article  PubMed  CAS  Google Scholar 

  • Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259

    Article  PubMed  CAS  Google Scholar 

  • Fowler MA, Champagne CD, Houser DS, Crocker DE (2008) Hormonal regulation of glucose clearance in lactating northern elephant seals (Mirounga angustirostris). J Exp Biol 211:2943–2949

    Article  PubMed  Google Scholar 

  • Garg ML, Sabine JR, Snoswell AM (1985) A comparison of the influence of diets high in saturated versus unsaturated fatty acids on lipid composition and glucose-6-phosphatase activity of rat liver microsomes. Biochem Int 10:585–595

    PubMed  CAS  Google Scholar 

  • Garland RC (1986) Induction of glucose-6-phosphatase in cultured hepatoma cells by dexamethasone. Biochem Biophys Res Commun 139:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith PK, Stetten MR (1979) Different developmental changes in latency for two functions of a single membrane bound enzyme: glucose-6-phosphatase activities as a function of age. Biochim Biophys Acta 583:133–147

    Article  PubMed  CAS  Google Scholar 

  • Gustafson LA, Neeft M, Reijngoud DJ, Kuipers F, Sauerwein HP, Romijn JA, Herling AW, Burger HJ, Meijer AJ (2001) Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes. Biochem J 358:665–671

    Article  PubMed  CAS  Google Scholar 

  • Haber BA, Chin S, Chuang E, Buikhuisen W, Naji A, Taub R (1995) High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest 95:832–841

    Article  PubMed  CAS  Google Scholar 

  • Hammond JA, Bennett KA, Walton M, Hall AJ (2005) Molecular cloning and expression of leptin in grey and harbor seal blubber, bone marrow and lung and its potential role in marine mammal respiratory physiology. Am J Physiol 289:R545–R553

    Article  CAS  Google Scholar 

  • Hanson TL, Nordlie RC (1970) Liver microsomal inorganic pyrophosphate-glucose phosphotransferase and glucose-6-phosphatase. Effects of diabetes and insulin administration on kinetic parameters. Biochim Biophys Acta 198:66–75

    Article  PubMed  CAS  Google Scholar 

  • Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Oeser JK, Neal DW, Cardin S, Cherrington AD, O’Brien RM (2001) Selective tonic inhibition of G-6-Pase catalytic subunit, but not G-6-P transporter, gene expression by insulin in vivo. Am J Physiol 281:E713–E725

    CAS  Google Scholar 

  • Houser DS, Costa DP (2003) Entrance into stage III fasting by starveling northern elephant seal pups. Mar Mamm Sci 19:186–197

    Article  Google Scholar 

  • Houser DS, Crocker DE, Tift MS, Champagne CD (2012) Glucose oxidation and nonoxidative glucose disposal during prolonged fasts of the northern elephant seal pup (Mirounga angustirostris). Am J Physiol 303:R562–R570

    CAS  Google Scholar 

  • Iverson SJ, Bowen WD, Boness DJ, Oftedal OT (1993) The effect of maternal size and milk energy output on pup growth in gray seals (Halichoerus grypus). Physiol Zool 66:61–88

    Google Scholar 

  • Karon BS, Gandhi GY, Nuttall GA, Bryant SC, Schaff HV, McMahon MM, Santrach PJ (2007) Accuarcy of Riche Accu-Chek inform whole blood capillary, arterial and venous glucose values in patients receiving intensive intravenous insulin therapy after cardiac surgery. Am J Clin Pathol 127:919–926

    Article  PubMed  CAS  Google Scholar 

  • Katsoulos PD, Minas A, Karatzia MA, Pourliotis K, Christodoulopoulos G (2011) Evaluation of a portable glucose meter for use in cattle and sheep. Vet Clin Pathol 40:245–247

    Article  PubMed  Google Scholar 

  • Keith EO, Ortiz CL (1989) Glucose kinetics in neonatal elephant seals during postweaning aphagia. Mar Mamm Sci 5:99–115

    Article  Google Scholar 

  • Khan A, Low H, Efendic S (1985) Effects of fasting and refeeding on the activity of hepatic glucose-6-phosphatase in rats. Acta Physiol Scand 124:591–596

    Article  PubMed  CAS  Google Scholar 

  • Kirby VL, Ortiz CL (1994) Hormones and fuel regulation in fasting elephant seals. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior and physiology. University of California Press, Berkeley, Los Angeles, London, pp 374–386

  • Lam TKT, Carpentier A, Lewis GF, van de Werve G, Fantus IG, Giacca A (2003) Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol 284:E863–E873

    CAS  Google Scholar 

  • Langdon RG, Weakley DR (1955) The influence of hormonal factors and diet upon hepatic glucose-6-phosphatase activity. J Biol Chem 214:167–174

    PubMed  CAS  Google Scholar 

  • Lange AJ, Argaud D, El-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ (1994) Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP. Biochem Biophys Res Comm 210:302–309

    Article  Google Scholar 

  • Lei KJ, Pan CJ, Liu J-L, Shelly LL, Chou JY (1995) Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Biol Chem 270:11882–11886

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Méchin M-C, van de Werve G (1999) Diabetes affects similarly the catalytic subunit and putative glucose-6-phosphate translocase of glucose-6-phosphatase. J Biol Chem 274:33866–33868

    Article  PubMed  CAS  Google Scholar 

  • Lindbloom S, Lecluyset M, Schermerhorn T (2008) Cloning and comparative bioinformatic analysis of feline glucose-6-phosphatase catalytic subunit cDNA. DNA Seq 19:256–263

    PubMed  CAS  Google Scholar 

  • Liu Z, Barrett EJ, Dalkin AC, Zwart AD, Chou JY (1994) Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA. Biochem Biophys Res Comm 205:680–686

    Article  PubMed  CAS  Google Scholar 

  • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. J Clin Invest 90:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Massillon D (2001) Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms: differential effects of glucose and xylitol. J Biol Chem 276:4055–4062

    Article  PubMed  CAS  Google Scholar 

  • Massillon D, Barzilai N, Chen W, Hu W, Rosetti L (1996) Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem 217:9871–9874

    Google Scholar 

  • Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rosetti L (1997) Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes 46:153–157

    Article  PubMed  CAS  Google Scholar 

  • Massillon D, Arinze IJ, Xu C, Bone F (2003) Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids—role of hepatic nuclear factor-4 alpha. J Biol Chem 278:40694–40701

    Article  PubMed  CAS  Google Scholar 

  • Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L (1998) Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes. J Clin Inv 102:744–753

    Article  CAS  Google Scholar 

  • Minassian C, Daniele N, Bordet J-C, Zitoun C, Mithieux D (1995) Liver glucose-6-phosphatase activity is inhibited by refeeding in rats. J Nutr 125:2727–2732

    PubMed  CAS  Google Scholar 

  • Minassian C, Montano S, Mithieux G (1999) Regulatory role of glucose-6 phosphatase in the repletion of liver glycogen during refeeding in fasted rats. Biochim Biophys Acta 1452:172–178

    Article  PubMed  CAS  Google Scholar 

  • Mithieux G, Daniele N, Payrastre B, Zitoun C (1998a) Liver microsomal glucose-6-phosphatase is competitively inhibited by the lipid products of phosphatidylinositol 3-kinase. J Biol Chem 273:17–19

    Article  PubMed  CAS  Google Scholar 

  • Mithieux G, Daniele N, Rajas F, Payrastre B, Mauco G, Zitoun C (1998b) The translocation of phosphatidylinositol 3-kinase may account for the inhibition of liver microsomal glucose-6 phosphatase after refeeding. Diabetes 47:926

    Google Scholar 

  • Ng P, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein structure. Nucl Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Nordlie RC, Hanson TL, Johns PT, Lygre DG (1968) Inhibition by nucleotides of liver microsomal glucose-6-phosphatase. Proc Natl Acad Sci USA 60:590–597

    Article  PubMed  CAS  Google Scholar 

  • Nordøy ES, Blix AS (1991) Glucose and ketone body turnover in fasting grey seal pups. Acta Physiol Scand 141:565–571

    Article  PubMed  Google Scholar 

  • Nordøy ES, Stijfhoorn DE, Raheim A, Blix AS (1992) Water flux and early signs of entrance into phase III of fasting in grey seal pups. Acta Physiol Scand 144:477–482

    Article  PubMed  Google Scholar 

  • Nordøy ES, Aakvaag A, Larsen TS (1993) Metabolic adaptations to fasting in harp seal pups. Physiol Zool 66:926–945

    Google Scholar 

  • Noren SR, Boness DJ, Iverson SJ, McMillan J, Bowen WD (2008) Body condition at weaning affects the duration of the postweaning fast in grey seal pups (Halichoerus grypus). Physiol Biochem Zool 81:269–277

    Article  PubMed  Google Scholar 

  • Nurnadia AA, Azrina A, Amin I (2011) Proximate composition and energetic value of selected marine fish and shellfish from the west coast of Peninsula Malaysia. Int Food Res J 18:137–148

    Google Scholar 

  • Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148

    Article  PubMed  CAS  Google Scholar 

  • Plagnes-Juan E, Lansard M, Seilez I, Medale F, Corraze G, Kaushik S, Panserat S, Skiba-Cassy S (2008) Insulin regulates the expression of several metabolism-related genes in the liver and primary hepatocytes of rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2510–2518

    Article  PubMed  CAS  Google Scholar 

  • Reidman M (1991) The pinnipeds: seals, sea lions and walruses. University of California Press, Berkeley

    Google Scholar 

  • Reilly JJ (1991) Adaptations to prolonged fasting in free-living, weaned grey seal pups. Am J Physiol 260:R267–R272

    PubMed  CAS  Google Scholar 

  • Roden M (2004) How free fatty acids inhibit glucose utilisation in human skeletal muscle. News Physiol Sci 19:92–96

    PubMed  CAS  Google Scholar 

  • Sakamoto KQ, Sato K, Naito Y, Habara Y, Ishizuka M, Fujita S (2009) Morphological features and blood parameters of Weddell seal (Leptonychotes weddelli) mothers and pups during the breeding season. J Vet Med Sci 71:341–344

    Article  PubMed  Google Scholar 

  • Salgado MC, Meton I, Egea M, Baanante IV (2004) Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. J Mol Endocrinol 33:783–795

    Article  PubMed  CAS  Google Scholar 

  • Schmoll D, Allan BB, Burchell A (1996) Cloning and sequencing of the 5′ region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett 383:63–66

    Article  PubMed  CAS  Google Scholar 

  • Schweigert FJ (1993) Effects of energy mobilization during fasting and lactation on plasma metabolites in the grey seal (Halichoerus grypus). Comp Biochem Physiol A 10:347–352

    Article  Google Scholar 

  • Shieh JJ, Terzioglu M, Hiraiwa H, Marsh J, Pan CJ, Chen LY, Chou JY (2002) The molecular basis of glycogen storage disease type 1a. J Biol Chem 277:5047–5053

    Article  PubMed  CAS  Google Scholar 

  • Spitz J, Mourocq E, Schoen V, Ridoux V (2010) Proximate composition and energy content of forage species from the Bay of Biscay: high- or low-quality food? ICES J Mar Sci 67:909–915

    Article  Google Scholar 

  • Steele R, Winkler B, Rathgeb I, Bjerknes C, Altszuler N (1968) Plasma glucose and free fatty acid metabolism in normal and long-fasted dogs. Am J Physiol 214:313–319

    PubMed  CAS  Google Scholar 

  • Stothard P (2000) The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104

    PubMed  CAS  Google Scholar 

  • van den Bosch HM, Bunger M, de Groot PJ, Van der Meijde J, Hooiveld GJ, Muller M (2007) Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting. BMC Genomics 8:267

    Article  PubMed  Google Scholar 

  • van Schaftingen E, Gerin I (2002) The glucose-6-phosphatase system. Biochem J 362:513–532

    Article  PubMed  Google Scholar 

  • Vianna AL, Nordlie RC (1969) The inhibition by physiological orthophosphate concentrations of hydrolytic and synthetic activities of liver glucose 6-phosphatase. J Biol Chem 244:4027–4032

    PubMed  CAS  Google Scholar 

  • Viscarra JA, Champagne CD, Crocker DE, Ortiz RM (2011a) 5′ AMP activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance. J Endocrinol 209:317–325

    Article  PubMed  CAS  Google Scholar 

  • Viscarra JA, Vasquez-Medina JP, Crocker DE, Ortiz RM (2011b) GLUT 4 is upregulated despite decreased insulin signaling during prolonged fasting in northern elephant seal pups. Am J Physiol 300:R150–R154

    CAS  Google Scholar 

  • Wang Y, Nakagawa Y, Liu L, Wang W, Ren X, Anghel A, Lutfy K, Friedman TC, Liu Y (2011) Tissue-specific dysregulation of hexose-6-phosphate dehydrogenase and glucose-6-phosphate transporter production in db/db mice as a model of type 2 diabetes. Diabetologia 54:440–450

    Article  PubMed  CAS  Google Scholar 

  • Woldstad S, Jenssen BJ (1999) Thyroid hormones in grey seal pups (Halichoerus grypus). Comp Biochem Physiol A 122:157–162

    Article  CAS  Google Scholar 

  • Worthy GAJ, Lavigne DM (1982) Changes in blood properties of fasting and feeding harp seal pups, Phoca groenlandica, after weaning. Can J Zool 60:586–592

    Article  CAS  Google Scholar 

  • Xu C, Chakravarty K, Kong XY, Tuy TT, Arinze IJ, Bone F, Massillon D (2007) Several transcription factors are recruited to the glucose-6-phosphatase gene promoter in response to palmitate in rat hepatocytes and H4IIE cells. J Nutr 137:554–559

    PubMed  CAS  Google Scholar 

  • Zeugswetter F, Benesch T, Pagitz M (2007) Validation of the portable blood glucose meter Free Style Freedom for the use in cats. Wien Tierzartz Monatt 94:143–148

    CAS  Google Scholar 

  • Zoccoli MA, Hoopes RR, Karnovsky MI (1982) Rat liver microsomal glucose-6-P translocase. Effect of physiological status on inhibition and labelling by stilbene disulfonic acid derivatives. J Biol Chem 257:1296–1300

    Google Scholar 

Download references

Acknowledgments

Logistical support was provided by the Sea Mammal Research Unit (SMRU), UK, Department of Fisheries and Oceans (DFO), Canada and the Canadian Coastguard. We would specifically like to thank Simon Moss at SMRU, Sam Turgeon at DFO and Sacha LeBlanc and Ian MacMillan at Mount Allison University. Scottish Natural Heritage granted SMRU the permit to collect samples on the Isle of May, Scotland. We would also like to thank Debbie Smith, Dr. David Lee, Natalie Donaher, Dr. John Hammond and Dr. Amanda Cockshutt for technical advice, Prof. Ann Burchell for access to facilities and consumables and Dr. Tyson MacCormack for helpful comments on the manuscript. This work was funded by a McCain postdoctoral fellowship at Mount Allison University, Canada (KAB), Marine Biology and Ecology Research Centre pump priming (KAB), a Natural Sciences and Engineering Research Council Discovery Grant (SC) and the Harold Crabtree Foundation (SC). We would like to thank the anonymous reviewers for their helpful input.

Ethical standard

This study was performed in accordance with the laws of the countries in which the work was conducted.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bennett.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, K.A., Hammill, M. & Currie, S. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels. J Comp Physiol B 183, 1075–1088 (2013). https://doi.org/10.1007/s00360-013-0768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0768-x

Keywords

Navigation