Skip to main content
Log in

The isotopic composition and insect content of diet predict tissue isotopic values in a South American passerine assemblage

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We analyzed the carbon and nitrogen isotopic values of the muscle, liver, and crop contents (“diet”) of 132 individuals of 16 species of Chilean birds. The nitrogen content of diet was tightly correlated with the fraction of gut contents represented by insects relative to plant material. The carbon and nitrogen isotopic values of diet, liver, and muscle were all linearly correlated, implying high temporal consistency in the isotopic value of the diet of these birds. However, δ15N was not significantly related with the percentage of insects in diet. These results cast doubt on the applicability of the use of 15N enrichment to diagnose trophic level in, at least some, terrestrial ecosystems. However, the residuals of the relationship relating the isotopic value of bird tissues with those of their diet were weakly negatively correlated with insect intake. We hypothesize that this negative correlation stems from the higher quality of protein found in insects relative to that of plant materials. Finally, our data corroborated a perplexing and controversial negative relationship between tissue to diet isotopic discrimination and the isotopic value of diet. We suggest that this relationship is an example of the commonly observed regression to the mean effect that plagues many scientific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akamatsu F, Toda H, Okino T (2004) Food source of riparian spiders analyzed by using stable isotopes. Ecol Res 19:655–662

    Article  Google Scholar 

  • Araújo MS, Bolnick DI, Machado G, Giarreta AA, dos Reis SF (2007) Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152:643–654

    Article  PubMed  Google Scholar 

  • Auerswald K, Wittmer MHOM, Zazzo A, Schaufele R, Schnyder H (2010) Biases in the analysis of stable isotope discrimination in food webs. J App Ecol 47:936–941

    Article  Google Scholar 

  • Barnett AG, van der Pols JC, Dobson AJ (2004) Regression to the mean: what it is and how to deal with it. Int J Epidemiol 34:215–220

    Article  PubMed  Google Scholar 

  • Bauchinger U, McWilliams S (2009) Carbon turnover in tissues of a passerine bird: allometry, isotopic clocks, and phenotypic flexibility in organ size. Physiol Biochem Zool 82:787–797

    Article  PubMed  Google Scholar 

  • Bearhop S, Furness RW, Hilton G, Votier SC, Waldron S (2003) A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Funct Ecol 17:270–275

    Article  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  • Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Boyd CE, Goodyear CP (1971) Nutritive quality of food in ecological systems. Archiv für Hydrobiologie 69:256–270

    Google Scholar 

  • Cabana G, Rassmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257

    Article  CAS  Google Scholar 

  • Carleton SA, Martínez del Rio C (2005) The effect of cold-induced increased metabolic rate on the rate of 13C and 15 N incorporation in house sparrows (Passer domesticus). Oecologia 14:226–232

    Article  Google Scholar 

  • Carleton SA, Bakken BH, Martínez del Rio C (2006) Metabolic substrate use and the turnover of endogenous energy reserves in broad-tailed hummingbirds (Selasphorus platycercus). J Exp Biol 209:2622–2627

    Article  PubMed  CAS  Google Scholar 

  • Carleton SA, Kelly L, Anderson-Sprecher R, Martínez del Rio C (2008) Should we use one, or multi-compartment models to describe 13C incorporation into animal tissues? Rapid Commun Mass Sp22:3008–3014

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (∆15N and ∆13C): the effect of diet isotopic values and applications for diet reconstruction. J App Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F, Figuerola J (2010) Trophic experiments to estimate isotope discrimination factors. J App Ecol 47:948–954

    Article  CAS  Google Scholar 

  • Codron D, Sponheimer M, Codron J, Newton I, Lanham JL, Clauss M (2012) The confounding effect of source isotopic heterogeneity on consumer-diet and tissue–tissue isotope relationships. Oecologia 169:939–953

    Article  PubMed  Google Scholar 

  • Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658

    Article  PubMed  CAS  Google Scholar 

  • Davis CE (1976) The effect of regression to the mean in epidemiological and clinical studies. Am J Epidemiol 104:493–498

    PubMed  CAS  Google Scholar 

  • DeNiro M, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • di Castri F, Hajek ER (1976) Bioclimatología de Chile. Editorial Universidad Católica de Chile, Santiago

    Google Scholar 

  • Doucette JL, Wissel B, Somers CM (2011) Cormorant-fisheries conflicts: stable isotopes reveal a consistent niche for avian piscivores in diverse food webs. Ecol Appl 21:2987–3001

    Article  Google Scholar 

  • Ehleringer JR, Rundel PW, Nagy KA (1986) Stable Isotopes in physiological ecology and food web research. Trends Ecol Evol 1:42–45

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol 40:503–537

    Article  CAS  Google Scholar 

  • Florin ST, Felicetti LA, Robbins CT (2011) The biological basis for understanding and predicting dietary-induced variation in nitrogen and sulphur isotope ratio discrimination. Funct Ecol 25:519–526

    Article  Google Scholar 

  • Fox-Dobbs K, Bump JK, Peterson RO, Fox DL, Koch PL (2007) Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Can J Zool 85:458–471

    Article  Google Scholar 

  • Friedman M (1992) Do old fallacies ever die? J Econ Lit 30:2129–2132

    Google Scholar 

  • Gagnon C, Hobson KA (2009) Using stable isotopes to track frugivory in migratory passerines. Can J Zool 87:981–992

    Article  CAS  Google Scholar 

  • Gannes LZ, O’Brien DM, Martínez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory. Ecology 78:1271–1276

    Article  Google Scholar 

  • Herrera LG, Hobson KA, Manzo A, Estrada D, Sanchez-Cordero V, Mendez G (2001) The role of fruit and insects in the nutrition of frugivorous bats: evaluating the use of stable isotope methods. Biotropica 33:520–528

    Google Scholar 

  • Herrera LG, Hobson KA, Rodríguez M, Hernandez P (2003) Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136:439–444

    Article  Google Scholar 

  • Herrera LG, Hobson KA, Martínez JC, Méndez CG (2006) Tracing the origin of dietary protein in tropical dry forest birds. Biotropica 38:735–742

    Article  Google Scholar 

  • Hobson KA (1987) Use of stable-carbon isotope analysis to estimate marine and terrestrial protein content in gull diets. Can J Zool 65:1210–1213

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for nondestructive sample in avian dietary studies. Auk 110:638–641

    Article  Google Scholar 

  • Hobson KA, Sealy SG (1991) Marine protein contributions to the diet of northern saw-whet owls on the Queen Charlotte Islands: a stable-isotope approach. Auk 108:437–440

    Google Scholar 

  • Hobson KA, Drever MC, Kaiser GW (1999) Norway rats as predators of burrow-nesting seabirds: insights from stable isotope analyses. J Wildl Manage 63:14–25

    Article  Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate analysis. Prentice Hall, NY

    Google Scholar 

  • Karasov WH (2011) Digestive physiology: a view from molecules to ecosystem. Am J Physiol Reg I 301:R276–R284

    Article  CAS  Google Scholar 

  • Klasing KC (1998) Comparative avian nutrition. CAB International, Wallingford

    Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Martínez del Rio C (2007) Comparing modes of inquiry. Nature 450:171

    Article  Google Scholar 

  • Martínez del Rio C, Wolf BO (2005) Mass-balance models for animal-isotopic ecology. In: Starck M, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, pp 141–174

    Google Scholar 

  • Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, Ithaca

    Google Scholar 

  • Newsome S, Martínez del Rio C, Phillips DL, Bearhop S (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Google Scholar 

  • Newsome SD, Bentall GB, Tinker MT, Oftedal O, Ralls K, Fogel ML, Estes JA (2010) Variation in diet-vibrissae δ13C and δ15N trophic discrimination factors in a wild population of California sea otters (Enydra lutris nereis). Ecol Appl 20:1744–1752

    Article  PubMed  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Ratcliffe TM (2005) Tracking habitat use of a long-distance migratory bird, the American redstart Setophaga ruticilla, using stable-carbon isotopes in cellular blood. J Avian Biol 36:164–170

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998) Fishing down marine food webs. Science 279:860–863

    Article  PubMed  CAS  Google Scholar 

  • Pearson SF, Levey DJ, Greenberg CH, Martínez del Rio C (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523

    PubMed  Google Scholar 

  • Perga ME, Grey J (2010) Laboratory measures of isotope discrimination factors: comments on Caut, Angulo & Courchamp (2008, 2009). J Appl Ecol 47:942–947

    Article  CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Robbins CT, Felicetti LA, Sponheimer M (2005) The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534–540

    Article  PubMed  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Sabat P, Martínez del Rio C (2002) Inter- and intraspecific variation in the use of marine food resources by three Cinclodes (Furnariidae, Aves) species: carbon isotopes and osmoregulatory physiology. Zoology 105:247–256

    Article  PubMed  Google Scholar 

  • Sabat P, Maldonado K, Canals M, Martínez del Rio C (2006a) Osmoregulation and adaptive radiation in the ovenbird genus Cinclodes (Passeriformes: Furnariidae). Funct Ecol 20:799–805

    Article  Google Scholar 

  • Sabat P, Maldonado K, Martínez del Rio C (2006b) Osmoregulatory capacity and the ability to use marine food sources in two coastal songbirds (Cinclodes: Furnariidae) along a latitudinal gradient. Oecologia 148:250–257

    Article  PubMed  Google Scholar 

  • Schaafsma G (2000) The protein digestibility-corrected amino acid score. J Nutr 130:1865S–1867S

    PubMed  CAS  Google Scholar 

  • Schondube JE, Herrera-M G, Martínez del Rio C (2001) Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104:59–73

    Article  PubMed  CAS  Google Scholar 

  • Sheppard RJ (2003) Regression to the mean: a threat to exercise science. Sports Med 33:575–584

    Article  Google Scholar 

  • Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140:476–486

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. W. H. Freeman, New York

    Google Scholar 

  • Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, West A, Passey B, Cerling T, Dearing D, Ehleringer J (2003) Nitrogen isotopes in mammalian herbivores: Hair d15 N values from a controlled-feeding study. Int J Osteoarchaeol 13:80–87

    Article  Google Scholar 

  • Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behaviour and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Stigler SM (1997) Regression towards the mean, historically considered. Stat Methods Med Res 6:103–114

    Article  PubMed  CAS  Google Scholar 

  • Takimoto G, Spiller DA, Post D (2008) Ecosystem size, but not disturbance, determines food-chain length of islands on the Bahamas. Ecology 89:3001–3007

    Article  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahland KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Vander Zanden JM, Fetzer WW (2007) Global patterns of aquatic food chain length. Oikos 116:1378–1388

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. CanJ Fish Aquat Sci 54:1142–1158

    Article  Google Scholar 

  • Voigt CC, Rex K, Michener RH, Speakman J (2008) Nutrient routing in omnivorous animals tracked by stable isotopes in tissue and exhaled breath. Oecologia 157:31–40

    Article  PubMed  Google Scholar 

  • Weir BS (1990) Genetic data analysis: methods for discrete population analysis. Sinauer, Sunderland

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

This work was financed by Fondo Nacional de Desarrollo Cientıfico y Tecnologico (Chile Proyecto no. 1080077) to Sabat and an NSF grant to Martínez del Rio (DIOS 0848028). Birds were captured with permits from SAG, Chile (No. 4052/2007). All protocols were approved by the Institutional Animal Care Committee of the Universidad de Chile, where the experiments were performed. We thank two anonymous referees for their useful comments on an earlier version of the manuscript. We also thank Andrés Sazo and Cristobal Narvaez for his invaluable help in the field and laboratory. This work is dedicated to our lovely friends Sandra Gonzalez and Jonathan Salinas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Sabat.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabat, P., Ramirez-Otarola, N., Bozinovic, F. et al. The isotopic composition and insect content of diet predict tissue isotopic values in a South American passerine assemblage. J Comp Physiol B 183, 419–430 (2013). https://doi.org/10.1007/s00360-012-0711-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0711-6

Keywords

Navigation