Skip to main content
Log in

Twitchin of mollusc smooth muscles can induce “catch”-like properties in human skeletal muscle: support for the assumption that the “catch” state involves twitchin linkages between myofilaments

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Molluscan catch muscles can maintain tension with low or even no energy utilization, and therefore, they represent ideal models for studying energy-saving holding states. For many decades it was assumed that catch is due to a simple slowing of the force-generating myosin head cross-bridge cycles. However, recently evidences increased suggesting that catch is rather caused by passive structures linking the myofilaments in a phosphorylation-dependent manner. One possible linkage structure is the titin-like thick filament protein twitchin, which could form bridges to the thin filaments. Twitchin is known to regulate the catch state depending on its phosphorylation state. Here, we found that twitchin induces a catch-like stiffness in skinned human skeletal muscle fibres, when these fibres are exposed to this protein. Subsequent phosphorylation of twitchin reduces the stiffness. These findings support the assumption that catch of molluscan smooth muscle involves twitchin linkages between thick and thin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achazi RK, Dolling B, Haakshorst R (1974) 5-HT-induced relaxation and cyclic AMP in a molluscan smooth muscle. Pflugers Arch 349:19–27. doi:10.1007/BF00587913

    Article  PubMed  CAS  Google Scholar 

  • Andruchov O, Galler S (2008) Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat. Pflugers Arch 455:1165–1172. doi:10.1007/s00424-007-0369-1

    Article  PubMed  CAS  Google Scholar 

  • Andruchova O, Höpflinger MC, Andruchov O, Galler S (2005) No effect of twitchin phosphorylation on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state? Pflugers Arch 450:326–334. doi:10.1007/s00424-005-1447-x

    Article  PubMed  CAS  Google Scholar 

  • Avrova SV, Borovikov YS, Shelud’ko NS (2007) Twitchin from molluscan catch muscles is a new potent thin filament regulator. J Muscle Res Cell Motil 28:467

    Google Scholar 

  • Bennett PM, Elliott A (1989) The ‘catch’ mechanism in molluscan muscle: an electron microscopy study of freeze-substituted anterior byssus retractor muscle of Mytilus edulis. J Muscle Res Cell Motil 10:297–311. doi:10.1007/BF01758426

    Google Scholar 

  • Borovikov YS (1999) Conformational changes of contractile proteins and their role in muscle contraction. Int Rev Cytol 189:267–301

    Article  PubMed  CAS  Google Scholar 

  • Borovikov YS, Gusev NB (1983) Effect of troponin-tropomyosin complex and Ca2+ on conformational changes in F-actin induced by myosin subfragment-1. Eur J Biochem 136:363–369. doi:10.1111/j.1432-1033.1983.tb07750.x

    Article  PubMed  CAS  Google Scholar 

  • Butler TM, Mooers SU, Li C, Narayan S, Siegman MJ (1998) Regulation of catch muscle by twitchin phosphorylation: effects on force, ATPase, and shortening. Biophys J 75:1904–1914

    Article  PubMed  CAS  Google Scholar 

  • Butler TM, Mooers SU, Siegman MJ (2006) Catch force links and the low to high force transition of myosin. Biophys J 90:3193–3202. doi:10.1529/biophysj.105.077453

    Article  PubMed  CAS  Google Scholar 

  • Castellani L, Cohen CA (1992) Calcineurin-like phosphatase is required for catch contraction. FEBS Lett 309:321–326. doi:10.1016/0014-5793(92)80798-L

    Article  PubMed  CAS  Google Scholar 

  • Funabara D, Watabe S, Mooers SU, Narayan S, Dudas C, Hartshorne DJ, Siegman MJ, Butler TM (2003) Twitchin from molluscan catch muscle: primary structure and relationship between site-specific phosphorylation and mechanical function. J Biol Chem 78:29308–29316. doi:10.1074/jbc.M303272200

    Article  CAS  Google Scholar 

  • Funabara D, Kanoh S, Siegman MJ, Butler TM, Hartshorne DJ, Watabe S (2005) Twitchin as a regulator of catch contraction in molluscan smooth muscle. J Muscle Res Cell Motil 26:455–460. doi:10.1007/s10974-005-9029-2

    Article  PubMed  CAS  Google Scholar 

  • Funabara D, Hamamoto C, Yamamoto K, Inoue A, Ueda M, Osawa R, Kanoh S, Hartshorne DJ, Suzuki S, Watabe S (2007) Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch. J Exp Biol 210:4399–4410

    Article  PubMed  CAS  Google Scholar 

  • Galler S (2008) Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell Motil 29:73–99. doi:10.1007/s10974-008-9149-6

    Article  PubMed  CAS  Google Scholar 

  • Galler S, Höpflinger MC, Andruchov O, Andruchova O, Grassberger H (2005) Effects of vanadate, phosphate and 2, 3-butanedione monoxime (BDM) on skinned molluscan catch muscle. Pflugers Arch 449:372–383. doi:10.1007/s00424-004-1350-x

    Article  PubMed  CAS  Google Scholar 

  • Gilloteaux J, Baguet F (1977) Contractile filaments organization in functional states of the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. Eur J Cell Biol 15:192–220

    Google Scholar 

  • Hauck R, Achazi RK (1987) The ultrastructure of a molluscan catch muscle during a contraction–relaxation cycle. Eur J Cell Biol 45:30–35

    Google Scholar 

  • Heumann HG, Zebe E (1968) Über die Funktionweise glatter Muskelfasern, Elektronenmikroskopische Untersuchungen am Byssusretraktor (ABRM) von Mytilus edulis. Zellforsch Mikrosk Anat 85:534–551. doi:10.1007/BF00324747

    Article  CAS  Google Scholar 

  • Höpflinger MC, Andruchova O, Andruchov O, Grassberger H, Galler S (2006) Effect of pH on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state? J Exp Biol 209:668–676. doi:10.1242/jeb.02033

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Simpson AW, Ashley CC (1989) Free calcium at rest during “catch” in single smooth muscle cells. Science 243:1367–1368. doi:10.1126/science.2922614

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294

    PubMed  CAS  Google Scholar 

  • Lowy J, Millmann BM, Hanson J (1964) Structure and function in smooth tonic muscle of lamellibranch molluscs. Proc Roy Soc Lond B Biol Sci 160:525–536. doi:10.1098/rspb.1964.0068

    Article  CAS  Google Scholar 

  • Pfitzer G, Rüegg JC (1982) Molluscan catch muscle: regulation and mechanics in living and skinned anterior byssus retractor muscle of Mytilus edulis. J Comp Physiol 147B:137–142

    Google Scholar 

  • Rüegg JC (1964) Tropomyosin-paramyosin system and “prolonged contraction” in a molluscan smooth muscle. Proc Roy Soc Lond B Biol Sci 160:536–542

    Article  Google Scholar 

  • Rüegg JC (1971) Smooth muscle tone. Physiol Rev 51:201–248

    PubMed  Google Scholar 

  • Schumacher T (1970) Paramyosin-Struktur und Sperrtonus, Untersuchungen am Byssusretraktor von Mytilus edulis mit dem Interferenz-Kontrast-Mikroskop. Experientia 26:631–633. doi:10.1007/BF01898730

    Article  PubMed  CAS  Google Scholar 

  • Shelud’ko NS, Matusovskaya GG, Permyakova TV, Matusovsky OS (2004) Twitchin, a thick-filament protein from molluscan catch muscle, interacts with F-actin in a phosphorylation-dependent way. Arch Biochem Biophys 432:269–277. doi:10.1016/j.abb.2004.10.006

    Article  PubMed  CAS  Google Scholar 

  • Shelud’ko NS, Matusovsky OS, Permyakova TV, Matusovskaya GG (2007) ‘‘Twitchin–actin linkage hypothesis’’ for the catch mechanism in molluscan muscles: Evidence that twitchin interacts with myosin, myorod, and paramyosin core and affects properties of actomyosin. Arch Biochem Biophys 466:125–135. doi:10.1016/j.abb.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  • Siegman MJ, Mooers SU, Li C, Narayan S, Trinkle-Mulcahy L, Watabe S, Hartshorne DJ, Butler TM (1997) Phosphorylation of a high molecular weight (approximately 600 kDa) protein regulates catch in invertebrate smooth muscle. J Muscle Res Cell Motil 18:655–670. doi:10.1023/A:1018683823020

    Article  PubMed  CAS  Google Scholar 

  • Siegman MJ, Funabara D, Kinoshita S, Watabe S, Hartshorne DJ, Butler TM (1998) Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc Natl Acad Sci USA 95:5383–5388. doi:10.1073/pnas.95.9.5383

    Article  PubMed  CAS  Google Scholar 

  • Sugi H, Iwamoto H, Shimo M, Shirakawa I (1999) Evidence for load-bearing structures specialized for the catch state in Mytilus smooth muscle. Comp Biochem Physiol A Mol Integr Physiol 122:347–353

    Article  Google Scholar 

  • Takahashi M, Sohma H, Morita F (1988) The steady state intermediate of scallop smooth muscle myosin ATPase and effect of light chain phosphorylation. A molecular mechanism for catch contraction. J Biochem 104:102–107

    PubMed  CAS  Google Scholar 

  • Takahashi I, Shimada M, Akimoto T, Kishi T, Sugi H (2003) Electron microscopic evidence for the thick filament interconnections associated with the catch state in the anterior byssal retractor muscle of Mytilus edulis. Comp Biochem Physiol 134A:115–120

    CAS  Google Scholar 

  • Twarog BM (1954) Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Physiol 44:141–163. doi:10.1002/jcp.1030440112

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Yoshio M, Kojima H, Oiwa K (2001) An in vitro assay reveals essential protein components for the “catch” state of invertebrate smooth muscle. Proc Natl Acad Sci USA 98:6635–6640. doi:10.1073/pnas.111585098

    Article  PubMed  CAS  Google Scholar 

  • Zange J, Grieshaber MK, Jans AW (1990) The regulation of intracellular pH estimated by 31P-NMR spectroscopy in the anterior byssus retractor muscle of Mytilus edulis L. J Exp Biol 150:95–109

    Google Scholar 

Download references

Acknowledgments

We are grateful to Profs. Gabriela and George Stephenson (Melbourne) for helpful comments on the manuscript. Supported by FWF-P16709 (Austria) and by the RFFR (08-04-00960a and 08-04-00793a), MCB program of the RAS and program “The Leading Scientific Schools of Russia” (NSH-1961.2008.4). The experiments comply with the current laws of Austria, where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Galler.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avrova, S.V., Shelud’ko, N.S., Borovikov, Y.S. et al. Twitchin of mollusc smooth muscles can induce “catch”-like properties in human skeletal muscle: support for the assumption that the “catch” state involves twitchin linkages between myofilaments. J Comp Physiol B 179, 945–950 (2009). https://doi.org/10.1007/s00360-009-0375-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0375-z

Keywords

Navigation