Skip to main content
Log in

Fecal steroid monitoring for assessing gonadal and adrenal activity in the golden eagle and peregrine falcon

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We examined the efficacy of noninvasive monitoring of endocrine function via fecal steroid immunoassays in the golden eagle and peregrine falcon. High-pressure liquid chromatography analyses of fecal glucocorticoid metabolites (fGCM) revealed that minor percentages of immunoreactive fGCM co-eluted with [3H]corticosterone in both sexes of the eagle (2.5–2.7%) and falcon (7.5–11.9%). In contrast, most fecal estrogen metabolites in eagle and falcon females co-eluted with radiolabeled estradiol-17β ([3H]; 57.6, 64.6%, respectively) or estrone ([3H]; 26.9, 4.1%, respectively). Most fecal progestin metabolite immunoreactivity in the female eagle (24.8%) and falcon (21.7%) co-eluted with progesterone ([14C]). Most fecal androgen metabolite immunoreactivity in eagle (55.8%) and falcon (63.7%) males co-eluted with testosterone ([14C]). Exogenous adrenocorticotropin hormone induced increased fGCM excretion above pre-treatment in both species, but only significantly (P < 0.05) in the eagle. Both species showed increased fGCM after saline administration, suggesting the detection of ‘handling stress.’ Both species exhibited enterohepatic and renal recirculation of administered steroids as demonstrated by biphasic and triphasic excretion patterns. Thus, noninvasive fecal hormone monitoring is a valid and promising tool for assessing gonadal and adrenal status in rare and threatened birds-of-prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ACTH:

Adrenocorticotropin hormone

CERI, JCCP:

Centro de Estudios de Rapaces Ibericas

CORT:

Corticosterone

CRC:

Conservation and Research Center

c.p.m.:

Counts per minute

dH2O:

Distilled water

E:

Estrogen

E1 :

Estrone

E2 :

Estradiol-17β

EtOH:

Ethanol

fAM:

Fecal androgen metabolites

fEM:

Fecal estrogen metabolites

fGCM:

Fecal glucocorticoid metabolites

fPM:

Fecal progestin metabolites

HPA:

Hypothalamic-pituitary axis

HPLC:

High-pressure liquid chromatography

MeOH:

Methanol

P:

Progestin

P4 :

Progesterone

T:

Testosterone

References

  • Albaugh M (1999) Endocrine-behavioral correlation of reproduction in the Bali mynah. MS thesis, George Mason University

  • Astheimer LB, Buttemer WA, Wingfield JC (1994) General and seasonal differences in the adrenocortical response to ACTH challenge in an arctic passerine, Zonotrichia leucophrys gambelli. Gen Comp Endocrinol 94:33–43

    Article  PubMed  CAS  Google Scholar 

  • Bishop CM, Hall MR (1991) Non-invasive monitoring of avian reproduction by simplified faecal steroid analysis. J Zool Lond 224:649–668

    Article  Google Scholar 

  • Breuner CW, Orchnick M (2001) Seasonal regulation of membrane and intracellular receptors in the house sparrow brain. J Neuroendocrinol 13:412–420

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Wasser SK, Wildt DE, Graham LH (1994) Comparative aspects of steroid hormone metabolism and ovarian activity in felids, measured noninvasively in feces. Biol Reprod 51:776–786

    Article  PubMed  CAS  Google Scholar 

  • Cockrem JF, Rounce JR (1994) Faecal measurements of oestradiol and testosterone allow the non-invasive estimation of plasma steroid concentrations in the domestic fowl. Br Poult Sci 35:433–443

    PubMed  CAS  Google Scholar 

  • Dehnhrad M, Schreer A, Krone O, Jewgenow K, Krause M, Grossmann R (2003) Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken (Gallus domesticus), the great cormorant (Phalacrocorax carbo), and the goshawk (Accipiter gentilis). Gen Comp Endocrinol 131:345–352

    Article  CAS  Google Scholar 

  • Deviche P, Balthazar J, Heyns W, Hendrick J (1980) Endocrine effects of castration followed by androgen replacement and ACTH injections in male domestic ducks (Anas platyrhynchos L.). Gen Comp Endocrinol 41:53–61

    Article  PubMed  CAS  Google Scholar 

  • del Hoyo J, Elliot A, Sargatal J (1994) Handbook of birds of the world, vol 2, new world vultures to guineafowl. Lynx Edicions, Barcelona

  • Frigerio D, Möstl E, Kotrschal K (2001) Excreted metabolites of gonadal steroid hormones and corticosterone in greylag geese (Anser anser) from hatching to fledging. Gen Comp Endocrinol 124:246–255

    Article  PubMed  CAS  Google Scholar 

  • Goymann W, Möstl E, Gwinner E (2002) Non-invasive methods to measure androgen metabolites in excrements of European stonechats, Saxicola torquata rubicola. Gen Comp Endocrinol 129:80–87

    Article  PubMed  CAS  Google Scholar 

  • Goymann W (2005) Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and influences of diet on hormone metabolite levels. Ann NY Acad Sci 1046:35–53

    Article  PubMed  CAS  Google Scholar 

  • Gray JM, Yarian D, Ramenofsky M (1990) Corticosterone, foraging behavior, and metabolism in dark-eyed juncos, junco hyemalis. Gen Comp Endocrinol 79:375–384

    Article  PubMed  CAS  Google Scholar 

  • Heath JA, Dufty AM Jr (1998) Body condition and the adrenal stress response in captive American kestrel juveniles. Physiol Zool 71:67–73

    PubMed  CAS  Google Scholar 

  • Heiblum R, Arnon E, Gvaryahu G, Robinson B, Snapir N (2000) Short-term stress increases testosterone secretion from testes in domestic fowl. Gen Comp Endocrinol 120:55–66

    Article  PubMed  CAS  Google Scholar 

  • Helton ED, Holmes WN (1973) The distribution and metabolism of labeled corticosteroids in the duck (Anas platyrhynchos). J Endocrinol 56:361–385

    PubMed  CAS  Google Scholar 

  • Hiebert SM, Ramenofsky M, Salvante K, Wingfield JC, Gass CL (2000) Noninvasive methods for measuring and manipulating corticosterone in hummingbirds. Gen Comp Endocrinol 120:235–247

    Article  PubMed  CAS  Google Scholar 

  • Hirschenhauser K, Möstl E, Kotrschal K (1999) Seasonal patterns of sex steroids determined from feces in different social categories of greylag geese (Anser anser). Gen Comp Endocrinol 114:67–79

    Article  PubMed  CAS  Google Scholar 

  • Holmes WN, Phillips JG (1976) The adrenal cortex of birds. In: Chester Jones I, Henderson IW (ed) General, comparative, and clinical endocrinology of the adrenal cortex, vol 1. Academic, London, pp 293–420

  • Lee J, Tell L, Lasley B (1999) A comparison of sex steroid hormone excretion and metabolism by psittacine species. Zoo Biol 18:247–260

    Article  CAS  Google Scholar 

  • Ludders JW, Landenberg JA, Czekala NM, Erb HN, McCormick H (1998) Serum corticosterone response to adrenocorticotropin hormone stimulation in Florida sandhill cranes. J Wildl Dis 34:715–721

    PubMed  CAS  Google Scholar 

  • Ludders JW, Landenberg JA, Czekala NM, Erb HN (2001) Fecal corticosterone reflects serum corticosterone in Florida sandhill cranes. J Wildl Dis 37:646–652

    PubMed  CAS  Google Scholar 

  • McKerns KW (1969) Steroid hormones and metabolism. Appleton-Century-Crofts, New York

    Google Scholar 

  • Meijer T, Schwabl H (1989) Hormonal patterns in breeding and nonbreeding kestrels, Falco tinnunculus: field and laboratory studies. Gen Comp Endocrinol 74:148–160

    Article  PubMed  CAS  Google Scholar 

  • Monfort SL, Arthur NP, Wildt DE (1991) Monitoring ovarian function and pregnancy by evaluating excretion of urinary oestrogen conjugates in semi-free ranging przewalski’s horses (Equus przewalskii). J Reprod Fertil 83:155–164

    Google Scholar 

  • Morrow CJ, Monfort SL (1998) Ovarian activity in scimitar-horned oryx (Oryx dammah) determined by fecal steroid analysis. Anim Reprod Sci 53:191–207

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG (1999) The impact of stress on animal reproductive activities. In: Balm PHM (ed) Stress physiology in animals. Sheffield Academic and CRC, Sheffield UK and Boca Raton, IL, pp 130–177

    Google Scholar 

  • Rehder NB, Bird DM, Lague PC (1986) Variations in plasma corticosterone, estrone, estradiol-17β, and progesterone concentrations with forced renesting, molt, and body weight of captive female American kestrels. Gen Comp Endocrinol 62:386–393

    Article  PubMed  CAS  Google Scholar 

  • Rehder NB, Bird DM, Sanford LM (1988) Plasma androgens levels and body weights for breeding and nonbreeding male American kestrels. Condor 90:555–560

    Article  Google Scholar 

  • Romero LM, Wingfield JC (1999) Alterations in hypothalamic-pituitary-adrenal function associated with captivity in Gambel’s white crowned sparrows (Zonotrichia leucophrys gambelii). Comp Biochem Physiol B 122:13–20

    Article  PubMed  CAS  Google Scholar 

  • Romero LM, Remage-Healey L (2000) Daily and seasonal variation in response to stress in captive starlings (Sturnus vulgaris): corticosterone. Gen Comp Endocrinol 119:52–59

    Article  PubMed  CAS  Google Scholar 

  • Sockman KW, Schwabl H (1999) Daily estradiol and progesterone levels relative to laying and onset of incubation in canaries. Gen Comp Endocrinol 114:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sockman KW, Schwabl H (2001) Plasma corticosterone in nestling American kestrels: effects of age, handling stress, yolk androgens, and body condition. Gen Comp Endocrinol 122:205–212

    Article  PubMed  CAS  Google Scholar 

  • Spelman LH, Fleming WJ, Davis GS, Stoskopf MK (1995) Effect of exogenous adrenocorticotropin hormone administration on plasma corticosterone concentrations in American black ducks (Anas rubripes). J Wildlife Dis 31:136–141

    CAS  Google Scholar 

  • Tell LA, Lasley BL (1991) An automated assay for fecal estrogen conjugates in the determination of sex in avian species. Zoo Biol 10:361–367

    Article  Google Scholar 

  • Tell LA (1997) Excretion and metabolic fate of radiolabeled estradiol and testosterone in the cockatiel (Nymphicus hollandicus). Zoo Biol 16:505–518

    Article  CAS  Google Scholar 

  • Thompson KV, Mashburn KL, Monfort SL (1998) Characterization of estrons cyclicity in the sable antelope (Hippotragus niger) through fecal progestagen monitoring. Gen Comp Endocrinol 112:129–137

    Article  PubMed  CAS  Google Scholar 

  • Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann NY Acad Sci 1046:54–74

    Article  PubMed  CAS  Google Scholar 

  • Vylitová M, Mikšík I, Pácha J (1998) Metabolism of corticosterone in mammalian and avian intestine. Gen Comp Endocrinol 109:315–324

    Article  PubMed  Google Scholar 

  • Wasser SK, Thomas R, Nair PP, Guidry C, Southers J, Lucas J, Wildt DE, Monfort SL (1993) Effects of dietary fiber on faecal steroid measurements in baboons (Papio cynocephalus cynocephalus). J Reprod Fertil 97:569–574

    Article  PubMed  CAS  Google Scholar 

  • Wasser SK, Monfort SL, Southers J, Wildt DE (1994) Excretion rates and metabolites of oestradiol and progesterone in baboon (Papio cynocephalus cynocephalus) feaces. J Reprod Fertil 101:213–220

    Article  PubMed  CAS  Google Scholar 

  • Wasser SK, Bevis K, King G, Hanson E (1996) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022

    Article  Google Scholar 

  • Wasser SK, Bevis K, King G, Hanson E (1997) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022

    Article  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    Article  PubMed  CAS  Google Scholar 

  • Wasser SK, Hunt KE (2005) Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and the northern spotted owl. Ann NY Acad Sci 1046:109–137

    Article  PubMed  CAS  Google Scholar 

  • Welsh TH Jr, Johnson BH (1981) Stress-induced alterations in secretion of corticosteroids, progesterone, luteinizing hormone, and testosterone in bulls. Endocrinology 109:185–190

    Article  PubMed  CAS  Google Scholar 

  • Whitten PL, Brockman DK, Stavisky RC (1998) Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Yearb Phys Anthropol 41:1–23

    Article  Google Scholar 

  • Wilson CM, Holberton RL (2001) An alternative method for delivering adrenocorticotropin hormone in birds. Gen Comp Endocrinol 122:349–353

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Farner DS (1978) The annual cycle of plasma irLH and steroid hormones in feral populations of the white-crowned sparrow, Zonotrichia leucophrys gambelli. Biol Reprod 19:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC (1980) Sex steroid binding proteins in vertebrate blood. In: Ishii S, Hirano T, Wada M (eds) Hormones, evolution, and adaptation. Jap Sci Soc Press, Tokyo Springer-Verlag, Berlin, pp 135–144

    Google Scholar 

  • Wingfield JC, Matt KS, Farner DS (1984) Physiologic properties of steroid-hormone binding proteins in avian blood. Gen Comp Endocrinol 53:281–292

    Article  PubMed  CAS  Google Scholar 

  • Zenoble RD, Kemppainen RJ, Young DW, Carpenter JW (1985) Effect of ACTH on plasma corticosterone and cortisol in eagles and condors. J Am Vet Med Assoc 187:1119–1120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Women’s Committee of the Smithsonian Institution. This project was made possible by the passion and dedicated efforts of CERI staff. The experiments in this study comply with the current laws of Spain and the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airica M. Staley.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, A.M., Blanco, J.M., Dufty, A.M. et al. Fecal steroid monitoring for assessing gonadal and adrenal activity in the golden eagle and peregrine falcon. J Comp Physiol B 177, 609–622 (2007). https://doi.org/10.1007/s00360-007-0159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0159-2

Keywords

Navigation