Skip to main content
Log in

Physiological acclimation of a desert antelope, Arabian oryx (Oryx leucoryx), to long-term food and water restriction

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Desert mammals often experience scarcity of drinking water and food for prolonged periods. In this study, the first long-term acclimation experiment in a non-domesticated desert-adapted ungulate, we investigated the mechanisms used by the Arabian oryx Oryx leucoryx, to adjust its physiology to progressive food and water restriction over 5 months, an experimental regimen and time course chosen to mimic what it typically experiences between spring and late summer in the desert. At the end of the acclimation period, oryx consumed less than one and half of food and water of animals in the control group and lost 8.2±2.6% of their initial body mass. Experimental animals reduced their mass-specific resting metabolic rate (RMR) and total evaporative water loss (TEWL) by 16.2 and 25.7%, respectively, and maintained a digestive efficiency of about 70%. We found no support for the idea that reduced RMR in oryx correlated with a decreased thyroid hormone concentration in plasma. At the end of the 5 months acclimation, oryx continued to mobilize fatty acids to fuel metabolism, and did not use protein breakdown as a major source of gluconeogenesis. Oryx in the experimental group reduced their water intake by 70% and maintained constant plasma osmolality. They adjusted their water budget by reducing mass-specific TEWL, increasing urine osmolality and reducing urine volume by 40%, and excreting feces with <50% water content. Oryx have an unusually low TEWL compared with other arid-zone ungulates; both hydrated and water-deprived individuals have TEWL values, 51.7 and 39.3%, respectively, of allometric predictions for arid-zone ungulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RMR:

Resting metabolic rate

TEWL:

Total evaporative water loss

WEI:

Water economy index

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252. Doi:10.1038/382250a0

  • Allen SE (1974) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Blaxter KL (1989) Energy metabolism in animals and man. Cambridge University Press, Cambridge

    Google Scholar 

  • Brosh A, Shkolnik A, Choshniak I (1986) Metabolic effects of infrequent drinking and low-quality feed on Bedouin goats. Ecology 67:1086–1090

    Article  Google Scholar 

  • Burrin DG, Ferrell CL, Britton RA, Bauer M (1990) Level of nutrition and visceral organ size and metabolic activity in sheep. Br J Nutr 64:439–448

    Article  PubMed  CAS  Google Scholar 

  • Canas R, Romero JJ, Baldwin RL (1982) Maintenance energy requirements during lactation in rats. J Nutr 112:1876–1880

    PubMed  CAS  Google Scholar 

  • Chew RM (1965) Water metabolism in mammals. In: Mayer WV, van Gelder RG (eds) Physiological mammalogy, vol 2. Mammalian reactions to stressful environments. Academic, New York, pp 43–178

  • Chilliard Y, Bengoumi M, Delavaud C, Faulconnier Y, Faye B (2005) Body lipids and adaptation of camel to food and water shortage: new data on adipocyte size and plasma leptin. In: Faye B, Esenov P (eds) Desertification combat and food safety. The added value of camel producers. IOS Press, Washington DC, pp 135–145

    Google Scholar 

  • Chilliard Y, Bocquier F, Doreau M (1998) Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction. Reprod Nutr Dev 38:131–152

    Article  PubMed  CAS  Google Scholar 

  • Chilliard Y, Bonnet M, Delavaud C, Faulconnier Y, Leroux C, Djiane J, Bocquier F (2001) Leptin in ruminants. Gene expression in adipose tissue and mammary gland, and regulation of plasma concentration. Domest Anim Endocrinol 21:271–295. Doi: 10.1016/S0739-7240(01)00124-2

  • Choshniak I, Ben-Kohav N, Taylor CR, Robertshaw D, Barnes RJ, Dobson A, Belkin V, Shkolnik A (1995) Metabolic adaptations for desert survival in the Bedouin goat. Am J Physiol 268:R1101–R1110

    PubMed  CAS  Google Scholar 

  • Degen AA (1997) Ecophysiology of small desert mammals. Adaptations of desert organisms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dehnhard M, Clauss M, Lechner-Doll M, Meyer HH, Palme R (2001) Noninvasive monitoring of adrenocortical activity in roe deer (Capreolus capreolus) by measurement of fecal cortisol metabolites. Gen Comp Endocrinol 123:111–120. Doi:10.1006/gcen.2001.7656

  • Delavaud C, Bengoumi M, Faye B, Tabarani A, Kann G, Chilliard Y (2004) Plasma leptin measurements in the dromedary camel and its relationships to adiposity and feeding level. Biotechnol Agron Soc Environ 8:45 (Special issue)

  • DelGiudice GD, Mech LD, Kunkel KE, Gese EM, Seal US (1992) Seasonal patterns of weight, hematology, and serum characteristics of free-ranging female white-tailed deer in Minnesota. Can J Zool 70:974–983

    Google Scholar 

  • DelGiudice GD, Mech LD, Seal US, Karns PD (1987) Effects of winter fasting and refeeding on white-tailed deer blood profiles. J Wildl Manage 51:865–873

    Article  Google Scholar 

  • Fisher M, Membery DA (1998) Climate. In: Ghazanfar SA, Fisher M (eds) Vegetation of the Arabian Peninsula. Kluwer, Dordrecht, pp 5–38

    Google Scholar 

  • Gentry AW (1992) The subfamilies and tribes of the family Bovidae. Mamm Rev 22:1–32

    Google Scholar 

  • Gerson R (1982) The middle east: landforms of a planetary desert through environmental changes. Striae 17:52–78

    Google Scholar 

  • Ghobrial L (1970) The water relations of the desert antelope Dorcas dorcas. Physiol Zool 43:249–256

    Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures, and some applications). USA-ARS Agricultural Handboooks 379. U.S. Government Printing Office, Washington

    Google Scholar 

  • Gorman M (1999) Oryx go back to the brink. Nature 398:190. Doi: 10.1038/18303

  • Harrison DL, Bates PJJ (1991) The mammals of Arabia. Harrison Zoological Museum Publication, Sevenoaks

    Google Scholar 

  • Hassanin A, Douzery EJP (1999) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13:227–243. Doi:10.1006/mpev.1999.0619

  • Heimberg M, Olubadewo JO, Wilcox HG (1985) Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Endocrinol Rev 6:590–607

    Article  CAS  Google Scholar 

  • Henderson DS (1974) Were they the last Arabian oryx? Oryx 12:347–350

    Google Scholar 

  • Hill RW (1972) Determination of oxygen consumption by use of the paramagnetic analyzer. J Appl Physiol 33:261–263

    PubMed  CAS  Google Scholar 

  • Horwitz W (1975) Official methods of analyses. Association of Official Analytical Chemists, Washington

    Google Scholar 

  • Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev 75:519–631

    Article  PubMed  CAS  Google Scholar 

  • Jaffé M (1886) Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400

    Google Scholar 

  • Jung D, Biggs H, Erikson J, Ledyard PU (1975) New colorimetric reaction for end-point, continuous-flow, and kinetic measurements of urea. Clin Chem 21:1136–1140

    PubMed  CAS  Google Scholar 

  • Jungermann K, Barth CA (1996) Energy metabolism and nutrition. In: Greger R, Windhorst U (eds) Comprehensive human physiology: from cellular mechanisms to integration, vol 2. Springer Heidelberg New York, pp 1425–1457

  • Kaneko JJ, Harvey JW, Bruss ML (1997) Clinical biochemistry of domestic animals. Academic, San Diego

    Google Scholar 

  • Kleiber M (1975) Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J Theor Biol 53:199–204

    Article  PubMed  CAS  Google Scholar 

  • Krebs HA (1950) Body size and tissue respiration. Biochim Biophys Acta 4:249–269

    Article  PubMed  CAS  Google Scholar 

  • Mallon DP, Kingswood SC (2001) Antelopes: global survey and regional action plans, part 4: North Africa, the Middle East, and Asia. IUCN/SSC Antelope Specialist Group, Gland

    Google Scholar 

  • Maloiy GMO (1970) Water economy of the Somali donkey. Am J Physiol 219:1522–1527

    PubMed  CAS  Google Scholar 

  • Maloiy GMO (1973) The water metabolism of a small East African antelope: the dik-dik. Proc R Soc Lond B Biol Sci 184:167–178

    PubMed  CAS  Google Scholar 

  • Maloiy GMO, Hopcraft D (1971) Thermoregulation and water relations of two East African antelopes: the hartebeest and impala. Comp Biochem Physiol A Physiol 38:525–534

    Article  CAS  Google Scholar 

  • Maloiy GMO, Taylor CR (1971) Water requirements of African goats and haired sheep. J Agric Sci (Cambridge) 77:203–208

    Google Scholar 

  • Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50:367–390. Doi: 10.1080/106351501300317987

  • Matthee CA, Robinson TJ (1999) Cytochrome b phylogeny of the family Bovidae; resolution within the Alcelaphini, Antilopini, Neotragini, and Tragelaphini. Mol Phylogenet Evol 12:31–46. Doi: 10.1006/mpev.1998.0573

  • McMurray CH, Blanchflower WJ, Rice DA (1984) Automated kinetic method for D-3-hydroxybutyrate in plasma or serum. Clin Chem 30:421–425

    PubMed  CAS  Google Scholar 

  • Meigs P (1953) Review of research on arid zone hydrology. UNESCO, Paris

    Google Scholar 

  • Muñoz-Garcia A, Williams JB (2005) Cutaneous water loss and lipids of the stratum corneum in house sparrows (Passer domesticus) from arid and mesic environments. J Exp Biol 208:3689–3700

    Article  PubMed  CAS  Google Scholar 

  • Nagy KA (1987) Field metabolic rate, water flux and food requirements scaling in mammals and birds. Ecol Monogr 57:111–128

    Article  Google Scholar 

  • Nagy KA, Peterson CC (1988) Scaling of water flux rate in animals. University of California Press, Berkeley

    Google Scholar 

  • Oliver MH, Harding JE, Breier BH, Evans PC, Gluckman PD (1995) The effects of ovine placental lactogen infusion on metabolites, insulin-like growth factors and binding protein in the fetal sheep. J Endocrinol 144:333–338

    PubMed  CAS  Google Scholar 

  • Ostrowski S, Bedin E, Lenain D, Abuzinada AH (1998) Ten years of Arabian oryx conservation breeding in Saudi Arabia—achievements and regional perspectives. Oryx 32:209–222. Doi: 10.1046/j.1365-3008.1998.d01-38.x

  • Ostrowski S, Williams J, Ismail K (2003) Heterothermy and water economy of free-living Arabian oryx (Oryx leucoryx). J Exp Biol 206:1471–1478. Doi: 10.1242/jeb.00275

  • Ostrowski S, Williams JB, Bedin E, Ismail K (2002) Water influx and food consumption of free-living oryxes (Oryx leucoryx) in the Arabian desert in summer. J Mamm 83:665–673. Doi: 10.1644/1545-1542(2002)083<0665:WIAFCO>2.0.CO;2

  • Palme R, Möstl E (1997) Measurements of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Z Saugetierkd 62:192–197

    Google Scholar 

  • Parker KL, Robbins CT (1985) Thermoregulation in ungulates. In: Hudson RH, White RG (eds) Bioenergetics of wild herbivores. CRC Press, Boca Raton pp 201–234

    Google Scholar 

  • Prothero DR, Manning EM, Fischer M (1988) The phylogeny of the ungulates. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, vol 2. Mammals. Systematics Association Special vol 35B. Clarendon Press, Oxford, pp 201–234

  • Rebholz A, Harley E (1999) Phylogenetic relationships in the bovid subfamily Antilopinae based on mitochondrial DNA sequences. Mol Phylogenet Evol 12:87–94. Doi: 10.1006/mpev.1998.0586

  • Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am Nat 147:1047–1071

    Article  Google Scholar 

  • Robbins CT (1993) Wildlife feeding and nutrition. Academic, New York

    Google Scholar 

  • Ropiquet A, Hassanin A (2005) Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene. J Zool Syst Evol Res 43:49–60. Doi:10.1111/j.1439-0469.2004.00290.x

  • Sauerwein H, Heintges U, Hennies M, Selhorst T, Daxenberger A (2004) Growth hormone induced alterations of leptin serum concentration in dairy cows as measured by a novel enzyme immunoassay. Livest Prod Sci 87:189–195. Doi: 10.1016/j.livprodsci.2003.08.001

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment. Cambridge University Press, NY

    Google Scholar 

  • Schmidt-Nielsen K, Schmidt-Nielsen B, Jarnum SA, Houpt TR (1957) Body temperature of the camel and its relation to water economy. Am J Physiol 188:103–122

    PubMed  CAS  Google Scholar 

  • Sibly RM (1981) Strategies of digestion and defecation. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Sinauer Associates, Sunderland, pp 109–139

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles of statistics in biological research. W. H. Freeman and Co., New York

    Google Scholar 

  • Spalton JA (1999) The food supply of Arabian oryx (Oryx leucoryx) in the desert of Oman. J Zool 248:433–441. Doi: 10.1017/S0952836999008031

  • Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae. A mitochondrial-DNA study. Proc R Soc Lond B Biol Sci 256:1–6

    Article  CAS  Google Scholar 

  • Taylor CR (1970) Strategies of temperature regulation: effect of evaporation in East African ungulates. Am J Physiol 219:1131–1135

    PubMed  CAS  Google Scholar 

  • Taylor CR, Lyman CP (1967) A comparative study of the environmental physiology of an East African antelope, the eland, and the Hereford steer. Physiol Zool 40:280–295

    Google Scholar 

  • Treydte AC, Williams JB, Bedin E, Ostrowski S, Seddon PJ, Marschall EA, Waite TA, Ismail K (2001) In search of the optimal management strategy for Arabian oryx. Anim Conserv 4:239–249

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fibers; neural detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Webster AJF (1981) The energetic efficiency of metabolism. Proc Nutr Soc 40:121–128

    Article  PubMed  CAS  Google Scholar 

  • Williams JB, Ostrowski S, Bedin E, Ismail K (2001) Seasonal variation in energy expenditure, water flux and food consumption of Arabian oryx Oryx leucoryx. J Exp Biol 204:2301–2311

    PubMed  CAS  Google Scholar 

  • Williams JB, Tieleman BI (2000) Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J Exp Biol 203:3153–3159

    PubMed  CAS  Google Scholar 

  • Wilson RT (1989) Ecophysiology of the Camelidae and desert ruminants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

We wish to express our appreciation to the national commission for wildlife conservation and development (NCWCD), Riyadh, Saudi Arabia for support during our research efforts. Wildlife research programs at the national wildlife research center (NWRC) have been made possible through the initiative of HRH Prince Saud Al Faisal and under the guidance of AH Abuzinada. We thank RJ Hudson and RG White for commenting to an earlier version of the manuscript. We thank A. Muñoz-Garcia for help in PIC analyses. Experimental protocols on animals were approved by the NCWCD. Funding for this study was received from NCWCD/NWRC, the National Geographic Society (7348–02) and the National Science Foundation (JBW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Ostrowski.

Additional information

Communicated by G. Heldmaier

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowski, S., Williams, J.B., Mésochina, P. et al. Physiological acclimation of a desert antelope, Arabian oryx (Oryx leucoryx), to long-term food and water restriction. J Comp Physiol B 176, 191–201 (2006). https://doi.org/10.1007/s00360-005-0040-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0040-0

Keywords

Navigation