Skip to main content
Log in

Osmotic, sodium, carbon dioxide and acid-base state of the Port Jackson shark, Heterodontus portusjacksoni, in response to lowered salinity

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In marine elasmobranch fish the consequences for CO2 and acid–base state of moving into low salinity water are not well described. Sub-adult Port Jackson sharks, Heterodontus portusjacksoni, occasionally enter brackish water and survive in 50% seawater (SW). The unidirectional Na efflux and content, plasma volume, glomerular filtration rate (GFR), body mass, as well as CO2 and acid-base state in H. portusjacksoni were investigated following transfer from 100% SW to 75% SW and then to 50% SW. A rapid water influx resulted in a doubling of the plasma volume within 24 h in sharks in 75% SW and an 11% increase in body weight. Osmotic water influx was only partially offset by a doubling of the GFR. There was a ~40% decrease in plasma [Na] through a transiently elevated Na clearance and haemodilution. The result was a decrease in the inward gradient for Na+ together with reductions of nearly 50% in CO2 and buffer capacity. The sharks remained hypo-natric to 50% SW by partially conforming to the decrease in external osmotic pressure and avoided the need for active Na+ uptake. The gradient for Na+ efflux would by extrapolation approach zero at ~27% SW which may of itself prove a lethal internal dilution. In sharks transferred to 75% SW, a small transient hypercapnia and a later temporary metabolic alkalosis were all largely explained through anaemia promoting loss of CO2 and buffer capacity. In sharks transferred to 50% SW the metabolic alkalosis persisted until the end of the 1-week trial. Within the erythrocytes, increased pH was consequent on the large decrease in haemoglobin content exhibited by the sharks, which caused a large reduction in intracellular buffer. In water as dilute as 50% SW there was no evidence of specific effects on the mechanisms of management of CO2 or H+ excretion but rather significant and indirect effects of the severe haemodilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B A
Fig. 2A–C A
Fig. 3A–C

Similar content being viewed by others

Abbreviations

a–v :

arterial–venous

CA :

carbonic anhydrase

C a CO 2 :

content of CO2 in arterial blood

CCO 2 :

CO2 content

51 Cr-EDTA :

51chromium-ethylenediaminetetraactic acid

C v CO 2 :

content of CO2 in venous blood

FW :

freshwater

GFR :

glomerular filtration rate

Hct :

haematocrit

J out :

Na flux rate

MCHC :

mean cell haemoglobin concentration

OP :

osmotic pressure

P a CO 2 :

partial pressure of CO2in arterial blood

PCO 2 :

partial pressure of CO2

pH a :

arterial blood pH

pH er :

intra-erythrocyte fluid

pH pl :

whole blood pH

pH v :

venous blood pH

P v CO 2 :

partial pressure of CO2in venous blood

SID :

strong ion difference

SW :

seawater

TMAO :

trimethylamine-N-oxide

UFR :

urinary flow rate

References

  • Albers C (1970) Acid–base balance. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol IV. Academic Press, New York, pp 173–208

  • Albers C, Pleschka K (1967) Effect of temperature on CO2 transport in elasmobranch blood. Respir Physiol 2:261–273

    Article  CAS  PubMed  Google Scholar 

  • Beyenbach KW, Kirschner LB (1976) The unreliability of mammalian glomerular markers in teleostean renal studies. J Exp Biol 64:369–378

    CAS  PubMed  Google Scholar 

  • Boutilier RG, Heming TA, Iwama GK (1984) Physiological parameters for use in fish respiratory physiology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol X. Academic Press, New York, pp 403–430

  • Burger JW (1965) Roles of the rectal gland and kidneys in salt and water secretion in the spiny dogfish. Physiol Zool 38:191–196

    Google Scholar 

  • Burger JW (1967) Problems in the electrolyte economy of the spiny dogfish Squalus acanthias. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. Johns Hopkins, Baltimore, pp 177–185

  • Burton RF (1987) On calculating concentrations of “HCO3” from pH and Pco2. Comp Biochem Physiol 87:417–422

    Article  CAS  Google Scholar 

  • Bushnell PG, Lutz PL, Steffensen JF, Oikari A, Gruber SH (1982) Increases in arterial blood oxygen during exercise in the lemon shark (Negaprion brevirostris). J Comp Physiol 147:41–47

    Google Scholar 

  • Butler PJ, Metcalfe JD (1988) Cardiovascular and respiratory systems. In: Shuttleworth TJ (ed) Physiology of elasmobranch fishes. Springer, Berlin Heidelberg New York, pp 1–47

  • Butler PJ, Taylor EW, Davison W (1979) The effect of long-term, moderate hypoxia on acid–base balance, plasma catecholamines and possible anaerobic end products in the unrestrained dogfish Scyliorhinus canicula. J Comp Physiol 132:297–303

    CAS  Google Scholar 

  • Chan DKO, Wong TM (1977a) Physiological adjustments to dilution of the external medium in the lip-shark, Hemiscyllium plagiosum (Bennett) I. Size of body compartments and osmolyte composition. J Exp Zool 200:71–84

    CAS  Google Scholar 

  • Chan DKO, Wong TM (1977b) Physiological adjustments to dilution of the external medium in the lip-shark, Hemiscyllium plagiosum (Bennett). III. Oxygen consumption and metabolic rate. J Exp Zool 200:97–102

    CAS  Google Scholar 

  • Chantler C, Garnett ES, Parsons V, Veall N (1969) Glomerular filtration-rate measurement in man by the single injection method using 51Cr-EDTA. Clin Sci 37:169–180

    CAS  PubMed  Google Scholar 

  • Choe KP, Evans D (2003) Compensation for hypercapnia by a euryhaline elasmobranch: effect of salinity and role of gills and kidneys in fresh water. J Exp Zool A 297:52–63

    Article  Google Scholar 

  • Claiborne JB, Heisler N (1984) Acid–base regulation in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J Exp Biol 108:25–38

    Google Scholar 

  • Claiborne JB, Walton JS, Compton-McCullough D (1994) Acid–base regulation, branchial transfers and renal output in a marine teleost fish (the long-horned sculpin Myoxocephalus octodecimspinosus) during exposure to low salinities. J Exp Biol 193:79–95

    CAS  PubMed  Google Scholar 

  • Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid–base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 193:79–95

    Google Scholar 

  • Cooper AR (1999) The effect of changes in seawater salinity on the blood physiology of the Port Jackson shark, Heterodontus portusjacksoni. PhD Thesis, University of Sydney, Australia, pp 315

  • Cooper AR, Morris S (1998a) Osmotic, ionic and haematological response of the Port Jackson shark, Heterodontus portusjacksoni, and the common stingaree, Trygonoptera testacea, upon exposure to diluted seawater. Mar Biol 132:29–42

    Article  CAS  Google Scholar 

  • Cooper AR, Morris S (1998b) The blood respiratory, haematological, acid–base and ionic status of the Port Jackson shark, Heterodontus portusjacksoni, during recovery from anaesthesia and surgery: a comparison with sampling by direct caudal puncture. Comp Biochem Physiol 119:895–903

    Article  Google Scholar 

  • Cooper AR, Morris S (2003) Haemoglobin function and respiratory status of the Port Jackson shark, Heterodontus portusjacksoni, in response to lowered salinity. J Comp Physiol B (In press)

  • Curtis BJ, Wood CM (1992) Kidney and urinary bladder responses of freshwater rainbow trout to isosmotic NaCl and NaHCO3 infusion. J Exp Biol 173:181–203

    Google Scholar 

  • De Vlaming VL, Sage M (1973) Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp Biochem Physiol 45:31–44

    Article  Google Scholar 

  • Duthie GG, Tort L (1985) Effects of dorsal aortic cannulation on the respiration and haematology of Mediterranean living Scyliorhinus canicula L. Comp Biochem Physiol 81:879–883

    Article  Google Scholar 

  • Eddy FB, Lomholt JP, Weber RE, Johansen K (1977) Blood respiratory properties of rainbow trout (Salmo gairdneri) kept in water of high CO2 tension. J Exp Biol 67:37–47

    CAS  PubMed  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC, Florida, pp 315–341

  • Forster RP, Goldstein L (1976) Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am J Physiol 230:925–931

    CAS  PubMed  Google Scholar 

  • Gilmour KM, Perry SF (1996) The effects of experimental anaemia on CO2 excretion in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 15:259–272

    Google Scholar 

  • Gilmour KM, Perry SF, Bernier NJ, Henry RP, Wood CM (2001) Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion. Physiol Biochem Zool 74:477–492

    CAS  PubMed  Google Scholar 

  • Gilmour KM, Shah B, Szebedinszky C (2002) An investigation of carbonic anhydrase in the gills and blood plasma of brown bullhead (Ameiurus nebulosus), longnose skate (Raja rhina), and spotted ratfish (Hydrolagus colliei) J Comp Physiol B 172:77–86

    Google Scholar 

  • Goldstein L, Forster RP (1971) Osmoregulation and urea metabolism in the little skate Raja erinacea. Am J Physiol 220:742–746

    CAS  PubMed  Google Scholar 

  • Greenaway P (1981) Sodium regulation in the freshwater/land crab Holthuisana transversa. J Comp Physiol 142:451–456

    CAS  Google Scholar 

  • Greenaway P, Taylor HH, Morris S (1990) Adaptations to a terrestrial existence by the robber crab Birgus latro. VI. The role of the excretory system in fluid balance. J Exp Biol 152:505–519

    Google Scholar 

  • Grigg GC (1974) Respiratory function of blood in fishes. In: Florkin M, Scherr BT (eds). Chemical zoology, vol VIII. Academic Press, New York, pp 331–368

  • Haywood GP (1974) The exchangeable ionic space, and salinity effects upon ion, water, and urea turnover rates in the dogfish, Poroderma africanum. Mar Biol 26:69–75

    CAS  Google Scholar 

  • Heisler N (1982) Transepithelial ion transfer processes as mechanisms for fish acid–base regulation in hypercapnia and lactacidosis. Can J Zool 60:1108–1122

    CAS  Google Scholar 

  • Heisler N (1988) Acid–base regulation. In: Shuttleworth TJ (ed) Physiology of elasmobranch fishes. Springer, Berlin Heidelberg New York, pp 215–252

  • Heisler N, Toews DP, Holeton GF (1988) Regulation of ventilation and acid–base status in the elasmobranch Scyliorhinus stellaris during hyperoxia induced hypercapnia. Respir Physiol 71:227–246

    Article  CAS  PubMed  Google Scholar 

  • Heming TA, Randall DJ, Boutilier RG, Iwama GK, Primmett D (1986) Ionic equilibria in red blood cells of rainbow trout (Salmo gairdneri): Cl, HCO3 and H+. Respir Physiol 65:223–234

    Article  CAS  PubMed  Google Scholar 

  • Henderson IW, Brown JA, Oliver JA, Haywood GP (1978) Hormones and single nephron function in fishes. In: Gaillard PJ, Boer HH (eds) Comparative endocrinology. Elsevier, North Holland Biomedical, Amsterdam, pp 217–222

  • Henry RP, Swenson ER (2000) The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Respir Physiol 121:1–12

    CAS  PubMed  Google Scholar 

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology, vol I. Academic Press, New York, pp 91–239

  • Holmes WN, Donaldson EM (1969) Body compartments and distribution of electrolytes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol I. Academic Press, New York, pp 1–89

  • Hopkins TE, Cech JJ (2003) The influence of environmental variables on the distribution and abundance of three elasmobranchs in Tomales Bay, California. Environ Biol Fishes 66:279–291

    Article  Google Scholar 

  • Iwama GK, Heisler N (1991) Effect of environmental water salinity on acid–base regulation during environmental hypercapnia in the rainbow trout (Oncorhynchus mykiss). J Exp Biol 158:1–18

    Google Scholar 

  • Janech MG, Piermarini PM (1997) Urine flow rate and urine composition of freshwater Atlantic stingrays, Dasyatis sabina, from the St, Johns River, FL. Comp Physiol Biochem Published abstracts:147

    Google Scholar 

  • Janssen RG, Randall DJ (1975) The effects of changes in pH and Pco2 in blood and water on breathing in rainbow trout, Salmo gairdneri. Respir Physiol 25:235–245

    CAS  PubMed  Google Scholar 

  • Jensen FB, Weber RE (1982) Respiratory properties of tench blood and hemoglobin. Adaptation to hypoxic-hypercapnic water. Mol Physiol 2:235–250

    CAS  Google Scholar 

  • Lai NC, Graham JB, Burnett L (1990) Blood respiratory properties and the effect of swimming on blood–gas transport in the leopard shark Triakis semifasciata. J Exp Biol 151:161–173

    Google Scholar 

  • Last PR, Stevens JD (1994) Sharks and rays of Australia. CSIRO, Australia

  • Lenfant C, Johansen K (1966) Respiratory function in the elasmobranch Squalus suckleyi G. Respir Physiol 1:13–29

    CAS  PubMed  Google Scholar 

  • Lin H, Randall D (1995) Proton pumps in fish gills. In: Shuttleworth TJ, Wood CM (eds) Cellular and molecular approaches to fish ionic regulation. Academic Press, San Diego, pp 229–255

  • Maas AHJ, Rispens P, Siggaard-Anderson O, Zijlstra WG (1984) On the reliability of the Henderson–Hasselbalch equation in routine clinical acid–base chemistry. Ann Clin Biochem 21:26–39

    CAS  PubMed  Google Scholar 

  • Madsen SS, Larsen BK, Jensen FB (1996) Effects of freshwater to seawater transfer on osmoregulation, acid–base balance and respiration in river migrating whitefish (Coregonus lavaretus). J Comp Physiol B 166:101–109

    Google Scholar 

  • Maetz J, Payan P, DeRenzis G (1976) Controversial aspects of ionic uptake in fresh-water animals. In: Spencer-Davies P (ed) Perspectives in experimental biology, vol I. Plenum, New York, pp 77–92

  • Maxime V, Peyraud-Waitzenegger M, Claireaux G, Peyraud C (1990) Effects of rapid transfer from sea water to fresh water on respiratory variables, blood acid–base status and O2 affinity of hemoglobin in Atlantic salmon (Salmo salar L.). J Comp Physiol 160:31–39

    Google Scholar 

  • McKim JM, Kolanczyk RC, Lien GJ, Hoffman AD (1999) Dynamics of renal excretion of phenol and major metabolites in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol 45:265–277

    Article  CAS  Google Scholar 

  • McLaughlin RH, O’Gower AK (1970) Underwater tagging of the Port Jackson shark, Heterodontus portusjacksoni (Meyer). Bull Inst Océanogr Monaco 69:1–11

  • McLaughlin RH, O’Gower AK (1971) Life history and underwater studies of a heterodont shark. Ecol Monogr 41:271–289

    Google Scholar 

  • Nonnotte G, Truchot JP (1990) Time course of extracellular acid–base adjustment under hypo- or hyperosmotic conditions in the euryhaline fish Platichthys flesus. J Fish Biol 36:181–190

    Google Scholar 

  • Pang PKT, Griffith RW, Atz JW (1977) Osmoregulation in elasmobranchs. Am Zool 17:365–377

    CAS  Google Scholar 

  • Payan P, Goldstein L, Forster RP (1973) Gills and kidneys in ureosmotic regulation in euryhaline skates. Am J Physiol 224:367–372

    CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM (1993) An evaluation of factors limiting carbon dioxide excretion by trout red blood cells in vitro. J Exp Biol 180:39–54

    Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool 293:249–263

    Article  PubMed  Google Scholar 

  • Perry SF, Heming TA (1981) Blood ionic and acid–base status in rainbow trout (Salmo gairdneri) following rapid transfer from freshwater to seawater: effect of pseudobranch denervation. Can J Zool 59:1126–1132

    Google Scholar 

  • Perry SF, Davie PS, Daxboeck C, Randall DJ (1982) A comparison of CO2 excretion in spontaneously ventilating blood-perfused trout preparation and saline-perfused gill preparations: contribution of the branchial epithelium and red blood cell. J Exp Biol 101:47–60

    Google Scholar 

  • Piermarini PM, Evans DH (1998) Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jesup of the St. Johns River, Florida. Physiol Zool 85:553–560

    Google Scholar 

  • Piiper J (1986) Gas exchange and acid–base status. In: Heisler N (ed) Acid–base regulation in animals. Elsevier, Amsterdam, pp 49–81

  • Piiper J, Baumgarten-Schumann D (1968a) Effectiveness of O2 and CO2 exchange in the gills of the dogfish (Scyliorhinus stellaris). Respir Physiol 5:338–349

    Article  CAS  PubMed  Google Scholar 

  • Piiper J, Baumgarten-Schumann D (1968b) Transport of O2 and CO2 by water and blood in gas exchange of the dogfish (Scyliorhinus stellaris). Respir Physiol 5:326–337

    Article  CAS  PubMed  Google Scholar 

  • Piiper J, Schumann D (1967) Efficiency of O2 exchange in the gills of the dogfish, Scyliorhinus stellaris. Respir Physiol 2:135–148

    Article  Google Scholar 

  • Pleschka K, Wittenbrock I (1971) The solubility of carbon dioxide in elasmobranch plasma between 10EC and 22EC. Pflugers Arch Ges Physiol 329:186–190

    CAS  Google Scholar 

  • Rall DP, Sheldon W (1961) Transport of organic dyes by the choroid plexus of the spiny dogfish, Squalus acanthias. Biochem Pharmacol 11:169

    Article  Google Scholar 

  • Schmidt-Nielsen B, Truniger B, Rabinowitz L (1972) Sodium-linked urea transport by the renal tubule of the spiny dogfish, Squalus acanthias. Comp Biochem Physiol 42:13–25

    Article  CAS  Google Scholar 

  • Shaw J (1963) Kinetic aspects of ion regulation in aquatic animals. In: Carthy JD, Duddington CL (eds) Viewpoints in biology, vol II. Butterworths, London

  • Shuttleworth TJ (1988) Salt and water balance—extrarenal mechanisms. In: Shuttleworth TJ (ed) Physiology of elasmobranch fishes. Springer, Berlin Heidelberg New York, pp 171–199

  • Smith HW (1931a) The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98:296–310

    CAS  Google Scholar 

  • Smith HW (1931b) The absorption and excretion of water and salts by the elasmobranch fishes. I. Freshwater elasmobranchs. Am J Physiol 98:279–295

    CAS  Google Scholar 

  • Sulikowski JA, Maginniss LA (2001) Effects of environmental dilution on body fluid regulation in the yellow stingray, Urolophus jamaicensis. Comp Biochem Physiol 128:223–232

    Article  CAS  Google Scholar 

  • Tetens V, Lykkeboe G (1981) Blood respiratory properties of rainbow trout, Salmo gairdneri: responses to hypoxia acclimation and anoxic incubation of blood in vitro. J Comp Physiol 145:117–125

    Google Scholar 

  • Thorson TB (1958) Measurement of the fluid compartments of four species of marine Chondrichthyes. Physiol Zool 31:16–23

    Google Scholar 

  • Thorson TB (1961) The partitioning of body water in Osteichthyes: phylogenetic and ecological implications in aquatic vertebrates. Biol Bull 120:238–254

    Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1973) Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharinus leucas from freshwater and saline environments. Physiol Zool 46:29–42

    CAS  Google Scholar 

  • Thorson TB, Brooks DA, Mayes MA (1983) The evolution of freshwater adaptation in stingrays. National Geographic Society Research Reports (1974 Projects) 15:663–694

    Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid–base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20

    CAS  PubMed  Google Scholar 

  • Truchot JP (1987) Comparative aspects of extracellular acid–base balance. Springer, Berlin Heidelberg New York

  • Truchot JP, Toulmond A, Dejours P (1980) Blood acid–base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula. Respir Physiol 41:13–28

    Article  CAS  PubMed  Google Scholar 

  • Tufts BL, Perry SF (1998) Carbon dioxide transport and excretion. In: Perry SF, Tufts B (eds) Fish respiration. Academic Press, London, pp 229–282

  • Weber RE, Wells RMG, Rossetti JE (1983) Allosteric interactions governing oxygen equilibria in the haemoglobin system of the spiny dogfish, Squalus acanthias. J Exp Biol 103:109–120

    CAS  PubMed  Google Scholar 

  • Wells RMG, Weber RE (1983) Oxygenational properties and phosphorylated metabolic intermediates in blood erythrocytes of the dogfish, Squalus acanthias. J Exp Biol 103:95–108

    CAS  PubMed  Google Scholar 

  • Wilson JM, Laurent P, Tufts BL, Benos DJ, Donowitz M, Vogl AW, Randall DJ (2000) NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203:2279–2296

    CAS  PubMed  Google Scholar 

  • Wood CM, McMahon BR, McDonald DG (1979a) Respiratory, ventilatory, and cardiovascular responses to experimental anaemia in the starry flounder, Platichthys stellatus. J Exp Biol 82:139–162

    CAS  PubMed  Google Scholar 

  • Wood CM, McMahon BR, McDonald DG (1979b) Respiratory gas exchange in the resting starry flounder, Platichthys stellatus. A comparison with other teleosts. J Exp Biol 78:167–179

    CAS  PubMed  Google Scholar 

  • Wood CM, McDonald DG, McMahon BR (1982) The influence of experimental anaemia on blood acid–base regulation in vivo and in vitro in the starry flounder (Platichthys stellatus) and the rainbow trout (Salmo gairdneri). J Exp Biol 96:221–237

    Google Scholar 

  • Wood CM, Wheatly MG, Höbe H (1984) The mechanisms of acid–base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. III. Branchial changes. Respir Physiol 55:175–192

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Perry SF, Walsh PJ, Thomas S (1994) HCO3− dehydration by the blood of an elasmobranch in the absence of a Haldane effect. Respir Physiol 98:319–337

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to A. Broadhurst for the collection of the sharks and to the Darling Harbour aquarium for facilities. This work was carried while A.R.C. was in receipt of an Australian Research Council Post-Graduate Award. The work was carried out under animal ethics approval LO4/9-94/3/1079 and supported by funds from Morlab and Natural Events (http://www.natural-events.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morris.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, A.R., Morris, S. Osmotic, sodium, carbon dioxide and acid-base state of the Port Jackson shark, Heterodontus portusjacksoni, in response to lowered salinity. J Comp Physiol B 174, 211–222 (2004). https://doi.org/10.1007/s00360-003-0404-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-003-0404-2

Keywords

Navigation