Skip to main content
Log in

The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Most of our current understanding on colour discrimination by animal observers is built on models. These typically set strict limits on the capacity of an animal to discriminate between colour stimuli imposed by physiological characteristics of the visual system and different assumptions about the underlying mechanisms of colour processing by the brain. Such physiologically driven models were not designed to accommodate sigmoidal-type discrimination functions as those observed in recent behavioural experiments. Unfortunately, many of the fundamental assumptions on which commonly used colour models are based have been tested against empirical data for very few species and many colour vision studies solely rely on physiological measurements of these species for predicting colour discrimination processes. Here, we test the assumption of a universal principle of colour discrimination only mediated by physiological parameters using behavioural data from four closely related hymenopteran species, considering two frequently used models. Results indicate that there is not a unique function describing colour discrimination by closely related bee species, and that this process is independent of specific model assumptions; in fact, different models produce comparable results for specific test species if calibrated against behavioural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avargués-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5(e15):370. doi:10.1371/journal.pone.0015370

    Google Scholar 

  • Avargués-Weber A, Giurfa M (2014) Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination. J Comp Physiol A 200:449–461

    Article  Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vis Res 31:1381–1397

    Article  CAS  PubMed  Google Scholar 

  • Backhaus W (1998) Physiological and psychophysical simulations of color vision in humans and animals. In: Backhaus W, Reinhold K, Werner JS (eds) Color vision: perspectives from different disciplines. Walter de Gruyter, Berlin, pp 45–75

    Chapter  Google Scholar 

  • Benes ES (1969) Behavioral evidence for color discrimination by the whiptail lizard, Cnemidophorus tigris. Copeia 1969:707–722

    Article  Google Scholar 

  • Bobeth H (1979) Dressurversuche zum Farbensehen der Bienen: Die Sättigung von Spektralfarben. PhD thesis, Albert-Ludwigs-Universität zu Freigburg i.Br

  • Brandt R, Vorobyev M (1997) Metric analysis of threshold spectral sensitivity in the honeybee. Vis Res 37:425–439. doi:10.1016/S0042-6989(96)00195-2

    Article  CAS  PubMed  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Bukovac Z, Shrestha M, Garcia JE, Burd M, Dorin A, Dyer AG (2017) Why background colour matters to bees and flowers. J Comp Physiol A 203:369–380. doi:10.1007/s00359-017-1175-7

    Article  Google Scholar 

  • Bukovac Z, Dorin A, Dyer AG (2013) A-bees see: a simulation to assess social bee visual attention during complex search tasks. In: Lio’ P, Miglino O, Nicosia G, Nolfi G, Pavone M (eds) Advances in artificial life ECAL 2013. Proceedings of the twelfth European conference on the synthesis and simulation of living systems, Taormina, September 2013. MIT Press, Cambridge, Complex adaptive systems, pp 276–283

  • Burns JG, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18:R953–R954

    Article  CAS  PubMed  Google Scholar 

  • Champ CM, Vorobyev M, Marshall NJ (2016) Colour thresholds in a coral reef fish. R Soc Open Sci 3(160):399. doi:10.1098/rsos.160399

    Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Crawley MJ (2012) The R book, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchung des Farbensehens der Bienen. Z Vergleich Physiol 38:413–478

    Google Scholar 

  • Dyer AG (2006) Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae). Entomol Gen 28:257–268

    Article  Google Scholar 

  • Dyer AG, Arikawa K (2014) A hundred years of color studies in insects: with thanks to Karl von Frisch and the workers he inspired. J Comp Physiol A 200:409–410

    Article  Google Scholar 

  • Dyer AG, Boyd-Gerny S, McLoughlin S, Rosa MG, Simonov V, Wong BB (2012) Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc R Soc B 279:3606–3615. doi:10.1098/rspb.2012.0827

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: Bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114. doi:10.1007/s00359-003-0475-2

    Article  CAS  Google Scholar 

  • Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227

    Article  CAS  PubMed  Google Scholar 

  • Dyer AG (2012) Psychophysics of honey bee color processing in complex environments. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behaviour. Springer, Heidelberg, pp 303–314

    Chapter  Google Scholar 

  • Dyer AG, Garcia JE (2014) Color difference and memory recall in free-flying honeybees: forget the hard problem. Insects 5:629–638. doi:10.3390/insects5030629

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–57. doi:10.1007/s00359-005-0622-z

    Article  Google Scholar 

  • Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959. doi:10.1098/rspb.2010.2412

    Article  PubMed  Google Scholar 

  • Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627. doi:10.1007/s00359-008-0335-1

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  • Fleishman LJ, Perez CW, Yeo AI, Cummings KJ, Dick S, Almonte E (2016) Perceptual distance between colored stimuli in the lizard Anolis sagrei: comparing visual system models to empirical results. Behav Ecol Sociobiol 70:541–555. doi:10.1007/s00265-016-2072-8

    Article  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Abt allg Zool Physiol Tiere 37:1–187

    Google Scholar 

  • Garcia JE, Hung YS, Rosa MG, Endler JA, Dyer AG (2017) Improved color constancy in honeybees enabled by parallel visual projections from dorsal ocelli. PNAS. doi:10.1073/pnas.1703454114

    Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis Mellifera. Naturwissenschaften 91:228–231

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824. doi:10.1007/s00359-007-0235-9

    Article  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. doi:10.1126/science.1116681

    Article  PubMed  Google Scholar 

  • Hall P, Hart JD (1990) Bootstrap test for difference between means in nonparametric regression. JASA 85:1039–1049

    Article  Google Scholar 

  • von Helmholtz H (1970) Physiological optics. In: MacAdam D (ed) Sources of color science. MIT Press, Cambridge, pp 84–100

    Google Scholar 

  • von Helversen O (1972a) Zur spektralen der Honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • von Helversen O (1972b) The relationship between difference in stimuli and choice frequency in training experiments with the honeybee. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, pp 323–334

    Chapter  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433. doi:10.1007/s00359-014-0915-1

    Article  CAS  Google Scholar 

  • Howard J, Blakeslee B, Laughlin S (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc B 231:415–435

    Article  CAS  Google Scholar 

  • Kelber A (2016) Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception. Curr Opin Neurobiol 41:106–112. doi:10.1016/j.conb.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  • Kemp D, Herberstein M, Fleishman L, Endler J, Bennett A, Dyer A, Hart N, Marshall J, Whiting M (2015) An integrative framework for the appraisal of coloration in nature. Am Nat 185:705–724

    Article  PubMed  Google Scholar 

  • Komatsu H, Ideura Y (1993) Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 70:677–694

    CAS  PubMed  Google Scholar 

  • van der Kooi CJ, Elzenga JTM, Staal M, Stavenga DG (2016) How to colour a flower: on the optical principles of flower coloration. Proc R Soc B 283:1–9

    Google Scholar 

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc B 275:947–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulikowski J, Walsh V (1991) On the limits of colour detection and discrimination. In: Kulikowski J, Walsh V, Murray I (eds) Limits of vision. MacMillan Press, London, pp 202–220

    Google Scholar 

  • Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206. doi:10.1007/s003590050318

    Article  Google Scholar 

  • Lind O, Kelber A (2009) Avian colour vision: effects of variation in receptor sensitivity and noise data on model predictions as compared to behavioural results. Vis Res 49:1939–1947. doi:10.1016/j.visres.2009.05.003

    Article  PubMed  Google Scholar 

  • Longden KD (2016) Central brain circuitry for color vision modulated behaviors. Curr Biol 26:R981–R988

    Article  CAS  PubMed  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, New York

    Google Scholar 

  • MacAdam DL (1942) Visual sensitivities to color differences in daylight. J Opt Soc Am 32:247–273. doi:10.1364/JOSA.32.000247

    Article  Google Scholar 

  • MacAdam DL (1943) Specification of small chromaticity differences. J Opt Soc Am 33:18–26. doi:10.1364/JOSA.33.000018

    Article  Google Scholar 

  • MacAdam DL (1985) Color measurement theme and variations, 2nd edn. Springer, Berlin

    Google Scholar 

  • Martínez-Harms J, Vorobyev M, Schorn J, Shmida A, Keasar T, Homberg U, Schmeling F, Menzel R (2012) Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J Comp Physiol A 198:451–463

    Article  Google Scholar 

  • Morawetz L, Spaethe J (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J Exp Biol 215:2515–2523

    Article  PubMed  Google Scholar 

  • Neumeyer C (1992) Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J Comp Physiol A 171:639–649. doi:10.1007/BF00194111

    Article  Google Scholar 

  • Newhall SM, Burnham RW, Clark JR (1957) Comparison of successive with simultaneous color matching. J Opt Soc Am 47:43–54. doi:10.1364/JOSA.47.000043

    Article  Google Scholar 

  • Olsson P, Lind O, Kelber A (2015) Bird colour vision: behavioural thresholds reveal receptor noise. J Exp Biol 218:184–193

    Article  PubMed  Google Scholar 

  • Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 3:245–256. doi:10.1111/j.2041-210X.2011.00155.x

    Article  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, Souza J, Ventura D, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. doi:10.1007/bf00190398

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1-125

  • Pommerening A, Muszta A (2016) Relative plant growth revisited: towards a mathematical standardisation of separate approaches. Ecol Model 320:383–392

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Renoult JP, Kelber A, Schaefer HM (2017) Colour spaces in ecology and evolutionary biology. Biol Rev 92:292–315. doi:10.1111/brv.12230

    Article  PubMed  Google Scholar 

  • Reser DH, Wijesekara Witharanage R, Rosa MGP, Dyer AG (2012) Honeybees (Apis mellifera) learn color discriminations via differential conditioning independent of long wavelength (green) photoreceptor modulation. PLoS One 7(e48):577. doi:10.1371/journal.pone.0048577

    Google Scholar 

  • Shepard R (1987) Toward a universal law of generalization for psychological science. Science 237:1317–1323. doi:10.1126/science.3629243

    Article  CAS  PubMed  Google Scholar 

  • Shrödinger E (1926) Thresholds of color differences. In: MacAdam DL (ed) Sources of color science. MIT Press, Cambridge, pp 183–193

    Google Scholar 

  • Skorupski P, Chittka L (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Sommerlandt FMJ, Spaethe J, Rössler W, Dyer AG (2016) Does fine color discrimination learning in free-flying honeybees change mushroom-body calyx neuroarchitecture? PLoS One 11:1–17. doi:10.1371/journal.pone.0164386

    Article  Google Scholar 

  • Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–486

    Article  CAS  Google Scholar 

  • Stavenga D, Smits R, Hoenders B (1993) Simple exponential functions describing the absorbance bands of visual pigments. Vis Res 33:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Tabanick BG, Fidell L (2007) Using multivariate statistics, 5th edn. Pearson Allyn and Bacon, Boston

    Google Scholar 

  • Telles FJ, Kelber A, Rodríguez-Gironés MA (2016) Wavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum. J Exp Biol 219:553–560

    Article  PubMed  Google Scholar 

  • Thoen HH, How MJ, Chiou TH, Marshall J (2014) A different form of color vision in mantis shrimp. Science 343:411–413. doi:10.1126/science.1245824

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev M, Brandt R (1997) How do insect pollinators discriminate colors? Israel J Plant Sci 45:103–113

    Article  Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vis Res 41:639–653. doi:10.1016/s0042-6989(00)00288-1

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc B 265:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AA (1972) Psychometric and psychophysical hue discrimination functions for the pigeon. Vis Res 12:1447–1464. doi:10.1016/0042-6989(72)90171-X

    Article  CAS  PubMed  Google Scholar 

  • Wyszecki G, Stiles W (1982) Color science concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York

    Google Scholar 

  • Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis Mellifera L. J Insect Physiol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Saveliev AA (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Leo Fleishman for discussions and comments on a previous version of the manuscript, and Dr. Lalina Muir for careful editing. We also thank the two anonymous reviewers and editors for valuable feedback on our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian G. Dyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

AGD was supported by the Australian Research Council (DP0878968, DP130100015), original primary data was collected with the support of the Alexander von Humboldt Foundation (Germany).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, J.E., Spaethe, J. & Dyer, A.G. The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models. J Comp Physiol A 203, 983–997 (2017). https://doi.org/10.1007/s00359-017-1208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1208-2

Keywords

Navigation