Skip to main content

Advertisement

Log in

Skyline retention and retroactive interference in the navigating Australian desert ant, Melophorus bagoti

Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Visual cues commonly aid solitary foraging ants. Specifically, foragers can use the skyline where terrestrial landmarks meet the sky. Foraging ants show a remarkable affinity to retain these terrestrial cues, developing lifelong memories of the nest site panorama. Here we explore foragers’ ability to retain skyline cues of resource locations at some distance from the nest through experiments with artificial skylines erected around a resource location. We also tested the foragers’ memories of one skyline at several time points after the skyline was replaced by a different one. During retention testing, foragers appear able to retain robust memories of these skylines over periods (5 days) that surpass their average life span. Exposure to the nest panorama during these periods did not interfere with navigational performance at the distant skyline. Foragers in the replacement experiment initially oriented correctly to both skylines. Thereafter, the foragers’ headings in tests with the first skyline gradually shifted away from the correct homeward direction. We argue that new skyline memories cause retroactive interference in the retention of previously learned skylines. Skyline memories may compete during memory retrieval, or may be retrieved in association with context cues present in the current testing paradigm such as vector length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8:e1002336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Beugnon G, Lachaud JP, Chagné P (2005) Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J Insect Behav 18:415–432

    Article  Google Scholar 

  • Cheng K (2005) Context cues eliminate retroactive interference effects in honeybees Apis mellifera. J Exp Biol 208:1019–1024

    Article  PubMed  Google Scholar 

  • Cheng K, Wignall AE (2006) Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim Cogn 9:141

    Article  PubMed  Google Scholar 

  • Cheng K, Narendra A, Wehner R (2006) Behavioral ecology of odometric memories in desert ants: acquisition, retention and integration. Behav Ecol 17:227–235

    Article  Google Scholar 

  • Colborn M, Ahmad-Annuar A, Fauria K, Collett TS (1999) Contextual modulation of visuomotor associationsin bumble-bees (Bombus terrestris). Proc R Soc Lond B 266:2413–2418

    Article  Google Scholar 

  • Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107:11638–11643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83(3):245–259

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Fauria K, Dale K, Baron J (1997) Places and patterns – a study of context learning in honeybees. J Comp Physiol A 181:343–353

    Article  Google Scholar 

  • Collett TS, Kelber A (1988) The retrieval of visuo-spatial memories by honeybees. J Comp Physiol A 163:145–150

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Zeil J (1996) Flights of learning. Curr Dir Psychol 5:149–155

    Article  Google Scholar 

  • Collett TS, Collett M, Wehner R (2001) The guidance of desert ants by extended landmarks. J Exp Biol 204:1635–1639

    CAS  PubMed  Google Scholar 

  • Collett TS, Fauria K, Dale K (2003) Contextual cues and insect navigation. In: Jeffery KC (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 67–82

    Chapter  Google Scholar 

  • Collett TS, Graham P, Harris RA, Hempel-de-Ibarra N (2006) Navigational memories in ants and bees: memory retrieval when selecting and following routes. Adv Stud Behav 36:123–172

    Article  Google Scholar 

  • Differt D, Möller R (2015) Insect models of illumination-invariant skyline extraction from UV and green channels. J Theor Biol 380:444–462

    Article  PubMed  Google Scholar 

  • Dyer FC, Gill M, Sharbowski J (2002) Motivation and vector navigation in honey bees. Naturwissenschaften 89:262–264

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol. doi:10.1242/jeb.140459

    PubMed  Google Scholar 

  • Graham P, Cheng K (2009) Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? J Comp Physiol A 195:681–689

    Article  Google Scholar 

  • Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 1:1–12

    Article  Google Scholar 

  • Kollmeier T, Röben F, Schenck W, Möller R (2007) Spectral contrasts for landmark navigation. J Opt Soc Am A 24:1–10

    Article  Google Scholar 

  • Koltermann R (1969) Lern- und vergessensprozesse bei der honigbiene – aufgezeigt anhand von duftdressuren [Data on processes of learning and forgetting, gained from scent training of honey-bees]. Z vergl Physiol 63:310–334

    Article  Google Scholar 

  • Koltermann R (1971) 24-Std-Periodik in der Langzeiterrinerung an Duftund Farbsignale bei der Honigbiene [Circadian memory rhythm after scent and colour training with honey-bees]. Z vergl Physiol 75:49–68

    Article  Google Scholar 

  • Legge ELG, Spentch ML, Cheng KC (2010) Not using the obvious: desert atns, Melophorus bagoti, learn local vectors but not beacons in an arena. Anim Cogn 13:849–860

    Article  PubMed  Google Scholar 

  • Lehrer M (1993) Why do bees turn back and look? J Comp Physiol A 172:544–563

    Google Scholar 

  • Lehrer M (1996) Small-scale navigation in the honeybee: active acquisition of visual information about the goal. J Exp Biol 199:253–261

    CAS  PubMed  Google Scholar 

  • Möller R (2002) Insects could exploit UV-green contrast for landmark navigation. J Theor Biol 214:619–631

    Article  PubMed  Google Scholar 

  • Möller R (2012) A model of ant navigation based on visual prediction. J Theor Biol 305:118–130

    Article  PubMed  Google Scholar 

  • Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol A 137:63–71

    Article  Google Scholar 

  • Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525

    Article  Google Scholar 

  • Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371

    Article  PubMed  Google Scholar 

  • Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Aust J Zool 53:301–311

    Article  Google Scholar 

  • Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812

    Article  PubMed  Google Scholar 

  • Narendra A, Cheng K, Wehner R (2007a) Acquiring, retaining and integrating memories of the outbound distance in the Australian desert ant Melophorus bagoti. J Exp Biol 210:570–577

    Article  PubMed  Google Scholar 

  • Narendra A, Si A, Sulikowski D, Cheng K (2007b) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav Ecol Sociobiol 61:1543–1553

    Article  Google Scholar 

  • Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson DJ, Judd SPD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838

    PubMed  Google Scholar 

  • Philippides A, Baddeley B, Cheng K, Graham P (2011) How might ants use panoramic views for route navigation? J Exp Biol 214:445–451

    Article  PubMed  Google Scholar 

  • Rosengren R (1971) Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zool Fenn 133:10105

    Google Scholar 

  • Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81(5):1031–1038

    Article  Google Scholar 

  • Schultheiss P, Nooten SS (2013) Foraging patterns and strategies in an Australian desert ant. Austral Ecol 38:942–951

    Article  Google Scholar 

  • Schultheiss P, Wystrach A, Scwarz S, Tack A, Delor J, Nooten SS, Bibost AL, Freas CA, Cheng K (2016) Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim Behav 115:19–28

    Article  Google Scholar 

  • Sommer S, von Beeren C, Wehner R (2008) Multiroute memories in desert ants. Proc Natl Acad Sci USA 105:317–322

    Article  CAS  PubMed  Google Scholar 

  • Stürzl W, Zeil J, Boeddeker N, Hemmi JM (2016) How wasps acquire and use views for homing. Curr Biol 26:470–482

    Article  PubMed  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    Article  CAS  Google Scholar 

  • Wehner R (2008) The desert ant’s navigational toolkit: procedural rather than positional knowledge. Navigation 55:101–114

    Article  Google Scholar 

  • Wehner R, Harkness RD, Schimd-Hempel P (1983) Foraging strategies in individually searching ants, cataglyphis bicolor (Hymenoptera, Formicidae). Fischer, Stuttgart

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    CAS  PubMed  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2011a) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wystrach A, Schwarz S, Schultheiss P, Beugnon G, Cheng K (2011b) Views, landmarks, and routes: how do desert ants negotiate an obstacle course? J Comp Physiol A 197:167–179

    Article  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215:44–55

    Article  PubMed  Google Scholar 

  • Wystrach A, Mangan M, Philippides A, Graham P (2013) Snapshots in ants? new interpretations of paradigmatic experiments. J Exp Biol 216:1766–1770

    Article  PubMed  Google Scholar 

  • Wystrach A, Schwarz S, Schultheiss P, Baniel A, Cheng K (2014) Multiple sources of celestial compass information in the central Australian desert ant Melophorus bagoti. J Comp Physiol A 200:1–11

    Article  Google Scholar 

  • Zar JH (1998) Biostatisical analysis, 4th edn. Prentice Hall, Engelwood Cliffs

    Google Scholar 

  • Zeil J (1993) Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera). I. Description of flight. J Comp Physiol A 172:189–205

    Article  Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199:245–252

    CAS  PubMed  Google Scholar 

  • Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc B 369:20130034

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler PE, Wehner R (1997) Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis. J Comp Physiol A 181:13–20

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Australian Research Council (DP150101172). We thank the Centre of Appropriate Technology for access to the field site.

Author information

Authors and Affiliations

Authors

Contributions

Experiments conceived and designed: CAF and KC. Collected and analyzed data: CAF and CW. Drafted and revised paper: CAF and KC.

Corresponding author

Correspondence to Cody A. Freas.

Ethics declarations

Ethics statement

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freas, C.A., Whyte, C. & Cheng, K. Skyline retention and retroactive interference in the navigating Australian desert ant, Melophorus bagoti . J Comp Physiol A 203, 353–367 (2017). https://doi.org/10.1007/s00359-017-1174-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1174-8

Keywords

Navigation