Skip to main content
Log in

Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

COM :

Center of mass

CPG :

Central pattern generator

CTr :

Coxa-trochanter

Df :

Fast depressor trochanter neuron

Ds :

Depressor trochanter neuron

EMG :

Electromyogram

FETi :

Fast extensor tibia neuron

FTi :

Femur-tibia

SETi :

Slow extensor tibia neuron

T1 :

Prothoracic

T2 :

Mesothoracic

T3 :

Metathoracic

ThC :

Thorax-coxa

References

  • Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. J Neurophysiol 85:594–604

    PubMed  CAS  Google Scholar 

  • Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92:42 –51

    Article  PubMed  Google Scholar 

  • Atwood HL, Smyth T, Johnston HS (1969) Neuromuscular synapses in the cockroach extensor tibia muscle. J Insect Physiol 15:529–535

    Article  PubMed  CAS  Google Scholar 

  • Bässler U (1986) On the definition of central pattern generator and its sensory control. Biol Cybern 54:65– 69

    Article  Google Scholar 

  • Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements- multisensory control of a locomotor program. Brain Res Rev 27:65–68

    Article  PubMed  Google Scholar 

  • Blaesing B, Cruse H (2004) Mechanisms of stick insect locomotion in a gap-crossing paradigm. J Comp Physiol A 190:173–183

    Article  Google Scholar 

  • Blickhan R, Full RJ (1993) Similarity in multi-legged locomotion: bouncing like a monopode. J Comp Physiol A 173:509–517

    Article  Google Scholar 

  • Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198:435–456

    PubMed  Google Scholar 

  • Carbonell CS (1947) The thoracic muscles of the cockroach Periplaneta americana (L.). Smithson Misc Collect 107:1–23

    Google Scholar 

  • Cruse H (1976) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol A 112:235–262

    Article  Google Scholar 

  • Cruse H (1985) Which parameters control the leg movement of a walking insect? II. The start of the swing phase. J Exp Biol 116:357–362

    Google Scholar 

  • Cruse H (1990) What mechanisms coordinate the leg movement in walking arthropods? Trends Neurosci 13:15–21

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F, Usherwood P (1973) Motor activity during walking in the cockroach Periplaneta americana. I. Free walking. J Exp Biol 59:629–642

    Google Scholar 

  • Dresden D, Nijenhuis ED (1958) Fiber analysis of the nerves of the second thoracic leg in Periplaneta americana. Proc K Ned Akad Wetser C 61:213–233

    Google Scholar 

  • Duch C, Pflüger HJ (1995) Motor patterns for horizontal and upside-down walking and vertical climbing in the locust. J Exp Biol 198:1963–1976

    PubMed  Google Scholar 

  • Epstein S, Graham D (1983) Behaviour and motor output for an insect walking on a slippery surface. I. Forward walking. J Exp Biol 105:215–229

    Google Scholar 

  • Fischer H, Schmidt J, Haas R, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. J Neurophysiol 85:341–353

    PubMed  CAS  Google Scholar 

  • Franklin R, Bell WJ, Jander R (1981) Rotational locomotion by the cockroach Blattella germanica. J Insect Physiol 27:249–255

    Article  Google Scholar 

  • Frantsevich LI, Mokrushov PA (1980) Turning and righting in Geotrupes (Coleoptera, Scarabeidae). J Comp Physiol 136:279–289

    Article  Google Scholar 

  • Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369–390

    PubMed  CAS  Google Scholar 

  • Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81:23–52

    Article  Google Scholar 

  • Graham D, Epstein S (1985) Behaviour and motor output for an insect walking on a slippery surface. II. Backward walking. J Exp Biol 118:287–296

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology, Sect. 1: the nervous system, vol II. Am. Physiol. Soc., Bethesda, pp 1179–1236

  • Hess D, Büschges A (1997) Sensory pathways involved in interjoint reflex action in insect leg. J Neurobiol 33:891–913

    Article  PubMed  CAS  Google Scholar 

  • Hess D, Büschges A (1999) Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J Neurophysiol 81:1856–1865

    PubMed  CAS  Google Scholar 

  • Hiebert GW, Pearson KG (1999) Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. J Neurophysiol 81:758–770

    PubMed  CAS  Google Scholar 

  • Hughes GM (1952) The co-ordination of insect movements. I. The walking movements of insects. J Exp Biol 29:267–284

    Google Scholar 

  • Jindrich D, Full RJ (1999) Many-legged maneuverability: dynamics of turning in hexapods. J Exp Biol 202:1603–1623

    PubMed  Google Scholar 

  • Kram R, Wong B, Full RJ (1997) Three-dimensional kinematics and limb kinetic energy of running cockroaches. J Exp Biol 200:1919–1929

    PubMed  CAS  Google Scholar 

  • Larsen GS, Frazier SF, Fish SE, Zill SN (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176:229–238

    Article  PubMed  CAS  Google Scholar 

  • Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating circuit with neurons of different networks. Nature 351:60–63

    Article  PubMed  CAS  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2001) Force receptors in cockroach walking reconsidered, discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A 187:769–784

    Article  PubMed  CAS  Google Scholar 

  • Nye SW, Ritzmann RE (1992) Motion analysis of leg joints associated with escape turns of the cockroach, Periplaneta americana. J Comp Physiol A 171:183–194

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193

    Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Iles IF (1971) Innervation of coxal depressor muscle in the cockroach, Periplaneta americana. J Exp Biol 54:215–232

    PubMed  CAS  Google Scholar 

  • Reingold SC, Camhi JM (1977) A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach Periplaneta americana . J Insect Physiol 23:1407–1420

    Article  Google Scholar 

  • Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla, implications in dynamic control of posture and locomotion. J Comp Physiol A 186:359–374

    Article  PubMed  CAS  Google Scholar 

  • Ritzmann RE, Pollack AJ, Archinal J, Ridgel AL, Quinn RD (2005) Descending control of body attitude in the cockroach, Blaberus discoidalis and its role in incline climbing. J Comp Physiol A 191:253–264

    Article  Google Scholar 

  • Schmidt J, Fischer H, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. II. Control of motoneuronal activity. J Neurophysiol 85:354–361

    PubMed  CAS  Google Scholar 

  • Strauß R, Heisenberg M (1990) Coordination of legs during straight walking and turning in Drosophila melanogaster. J Comp Physiol A 167:403–412

    Article  PubMed  Google Scholar 

  • Tryba AK, Ritzmann RE (2000a) Multi-joint coordination during walking and foothold searching in the Blaberus Cockroach. I. Kinematics and electromyograms. J Neurophysiol 83:3323–3336

    PubMed  CAS  Google Scholar 

  • Tryba AK, Ritzmann RE (2000b) Multi-joint coordination during walking and foothold searching in the Blaberus Cockroach. II. Extensor motor neuron pattern. J Neurophysiol 83:3337–3350

    PubMed  CAS  Google Scholar 

  • Watson JT, Ritzmann RE (1998a) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. J Comp Physiol A 182:11–22

    Article  PubMed  CAS  Google Scholar 

  • Watson JT, Ritzmann RE (1998b) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running. J Comp Physiol A 182:23–33

    Article  PubMed  CAS  Google Scholar 

  • Watson JT, Ritzmann RE, Zill SN, Pollack AJ (2002a) Control of obstacle climbing in the cockroach, Blaberus discoidalis: I. Kinematics. J Comp Physiol A 188:39–53

    Article  Google Scholar 

  • Watson JT, Ritzmann RE, Pollack AJ (2002b) Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement. J Comp Physiol A 188:55–69

    Article  Google Scholar 

  • Zill SN, Moran DT (1981) The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana. J Exp Biol 94:57–75

    Google Scholar 

  • Zill SN, Moran DT, Varela FG (1981) The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the American cockroach, Periplaneta americana. J Exp Biol 94:43–55

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Mark Willis and Dr. Angela Ridgel for their helpful suggestions and comments on this manuscript, Allan Pollack for his technical support, and two anonymous reviewers for their insightful comments. This work is supported by Eglin AFB Grant F08630-03-01-0003 to RER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiyong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, L., Ritzmann, R.E. Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis . J Comp Physiol A 191, 1037–1054 (2005). https://doi.org/10.1007/s00359-005-0029-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0029-x

Keywords

Navigation