Skip to main content
Log in

Odor-guided behavior in Drosophila requires calreticulin

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The efficient processing of olfactory information is crucial for many aspects of life in animals, including behavior in insects. While much is known about the organization of the insect olfactory system, comparatively little is understood about the molecules that support its function. To further elucidate the molecular basis of olfaction, we explored the role of the calcium-binding chaperone calreticulin in the behavioral response of Drosophila to aversive odorants. We show that avoidance of naturally aversive odorants is impaired in flies harboring mutations in Calreticulin. Calreticulin mutants have broad defects in odor avoidance without abnormalities in antennal responses to odorants, alterations in central nervous system structure, or deficits in overall locomotor abilities. Interestingly, Calreticulin mutants exhibit defects in behavioral responses to odorants at low strength, whereas responses to higher odorant concentrations are preserved in these animals. Our studies indicate that calreticulin plays a key role in olfactory system function, possibly by establishing its overall sensitivity to odorants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A–D.
Fig. 4A,B.
Fig. 5A,B.
Fig. 6A–C.
Fig. 7A,B.
Fig. 8A,B.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Abbreviations

BNZ:

benzaldehyde

BDGP:

The Berkeley Drosophila Genome Project

Crc :

calreticulin

Crc + :

control flies

EAG:

electroantennogram

MCH:

4-methylcyclohexanol

OCT:

3-octanol

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Alcorta E (1991) Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants. J Neurophysiol 65:702–714

    CAS  PubMed  Google Scholar 

  • Arking R, Wells RA (1990) Genetic alteration of normal aging processes is responsible for extended longevity in Drosophila. Dev Genet 11:141–148

    CAS  PubMed  Google Scholar 

  • Ayer RK Jr, Carlson J (1991) acj6: a gene affecting olfactory physiology and behavior in Drosophila. Proc Natl Acad Sci USA 88:5467–5471

    CAS  PubMed  Google Scholar 

  • Ayer RK Jr, Carlson J (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J Neurobiol 23:965–982

    CAS  PubMed  Google Scholar 

  • Ayyub C, Paranjape J, Rodrigues V, Siddiqi O (1990) Genetics of olfactory behavior in Drosophila melanogaster. J Neurogenet 6:243–262

    CAS  PubMed  Google Scholar 

  • Ayyub C, Rodrigues V, Hasan G, Siddiqi O (2000) Genetic analysis of olfC demonstrates a role for the position-specific integrins in the olfactory system of Drosophila melanogaster. Mol Gen Genet 263:498–504

    Article  CAS  PubMed  Google Scholar 

  • Bancroft JD (1977) Frozen and related sections. In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques. The Spottiswoode Ballantyne Press, London, p 726

  • BDGP Project Members (1994–1999) Berkeley Drosophila Genome Project. Unpublished

  • Belle JS de, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695

    PubMed  Google Scholar 

  • Borst A (1984) Identification of different chemoreceptors by electroantennogram recording. J Insect Physiol 30:507–510

    CAS  Google Scholar 

  • Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  • Bruyne M de, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532

    PubMed  Google Scholar 

  • Bruyne M de, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  • Charro MJ, Alcorta E (1994) Quantifying relative importance of maxillary palp information on the olfactory behavior of Drosophila melanogaster. J Comp Physiol A 175:761–766

    CAS  PubMed  Google Scholar 

  • Clyne P, Grant A, O'Connell R, Carlson JR (1997) Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci 3:127–135

    CAS  PubMed  Google Scholar 

  • Clyne PJ, Certel SJ, de Bruyne M, Zaslavsky L, Johnson WA, Carlson JR (1999a) The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 22:339–347

    CAS  PubMed  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999b) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    CAS  PubMed  Google Scholar 

  • Connolly JB, Tully T (1998) Behaviour, learning, and memory. In: Roberts DB (ed) Drosophila: a practical approach. Oxford University Press, Oxford, pp 265–317

  • Coppolino MG, Dedhar S (1998) Calreticulin. Int J Biochem Cell Biol 30:553–558

    Article  CAS  PubMed  Google Scholar 

  • Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843–847

    CAS  PubMed  Google Scholar 

  • Dedhar S (1994) Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci 19:269–271

    Google Scholar 

  • Deshpande M, Venkatesh K, Rodrigues V, Hasan G (2000) The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae. J Neurobiol 43:282–288

    Google Scholar 

  • Dubin AE, Heald NL, Cleveland B, Carlson JR, Harris GL (1995) Scutoid mutation of Drosophila melanogaster specifically decreases olfactory responses to short-chain acetate esters and ketones. J Neurobiol 28:214–233

    CAS  PubMed  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411:476–480

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688

    CAS  PubMed  Google Scholar 

  • Fanara JJ, Robinson KO, Rollmann SM, Anholt RR, Mackay TF (2002) Vanaso is a candidate quantitative trait gene for Drosophila olfactory behavior. Genetics 162:1321–1328

    CAS  PubMed  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  PubMed  Google Scholar 

  • FlyBase (1999) The FlyBase database of the Drosophila Genome Projects and community literature. Nucleic Acids Res 27:85–88

    PubMed  Google Scholar 

  • Freeman MR, Dobritsa A, Gaines P, Segraves WA, Carlson JR (1999) The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126:4591–4602

    CAS  PubMed  Google Scholar 

  • Gamo S, Dodo K, Matakatsu H, Tanaka Y (1998) Molecular genetical analysis of Drosophila ether sensitive mutants. Toxicol Lett 100–101:329–337

    Google Scholar 

  • Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL (1998) Integrin-mediated short-term memory in Drosophila. Nature 391:455–460

    CAS  PubMed  Google Scholar 

  • Hayward DC, Delaney SJ, Campbell HD, Ghysen A, Benzer S, Kasprzak AB, Cotsell JN, Young IG, Miklos GL (1993) The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci USA 90:2979–2983

    CAS  PubMed  Google Scholar 

  • Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–15341

    Article  CAS  PubMed  Google Scholar 

  • Helfand SL, Carlson JR (1989) Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. Proc Natl Acad Sci USA 86:2908–2912

    CAS  PubMed  Google Scholar 

  • Johnson S, Michalak M, Opas M, Eggleton P (2001) The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11:122–129

    Article  CAS  PubMed  Google Scholar 

  • Kauer JS, White J (2001) Imaging and coding in the olfactory system. Annu Rev Neurosci 24:963–979

    Google Scholar 

  • Kennedy TE, Kuhl D, Barzilai A, Sweatt JD, Kandel ER (1992) Long-term sensitization training in Aplysia leads to an increase in calreticulin, a major presynaptic calcium-binding protein. Neuron 9:1013–1024

    CAS  PubMed  Google Scholar 

  • Kim MS, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150:711–721

    CAS  PubMed  Google Scholar 

  • Krause KH, Michalak M (1997) Calreticulin. Cell 88:439–443

    CAS  PubMed  Google Scholar 

  • Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286:720–723

    Article  CAS  PubMed  Google Scholar 

  • Kwon MS, Park CS, Choi K, Park C, Ahnn J, Kim JI, Eom SH, Kaufman SJ, Song WK (2000) Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol Biol Cell 11:1433–1443

    CAS  PubMed  Google Scholar 

  • Laurent G (1999) A systems perspective on early olfactory coding. Science 286:723–728

    Article  CAS  PubMed  Google Scholar 

  • Le Bourg E, Lints FA, Fresquet N, Bullens P (1993) Hypergravity, aging and longevity in Drosophila melanogaster. Comp Biochem Physiol 105:389–396

    Article  Google Scholar 

  • Lilly M, Kreber R, Ganetzky B, Carlson JR (1994) Evidence that the Drosophila olfactory mutant smellblind defines a novel class of sodium channel mutation. Genetics 136:1087–1096

    CAS  PubMed  Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293:1330–1333

    Article  CAS  PubMed  Google Scholar 

  • McKenna M, Monte P, Helfand SL, Woodard C, Carlson J (1989) A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci USA 86:8118–8122

    CAS  PubMed  Google Scholar 

  • Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH, Michalak M (1999) Calreticulin is essential for cardiac development. J Cell Biol 144:857–868

    CAS  PubMed  Google Scholar 

  • Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344:281–292

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Khazaeli AA, Curtsinger JW (2001) Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Gerontol 36:1137–1153

    Article  CAS  PubMed  Google Scholar 

  • Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, Gerisch G (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. Embo J 20:6772–6782

    Article  PubMed  Google Scholar 

  • Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, Papp S, De Smedt H, Parys JB, Müller-Esterl W, Lew DP, Krause KH, Demaurex N, Opas M, Michalak M (2001) Functional specialization of calreticulin domains. J Cell Biol 154:961–972

    Article  CAS  PubMed  Google Scholar 

  • Nauseef WM, McCormick SJ, Clark RA (1995) Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem 270:4741–4747

    Article  CAS  PubMed  Google Scholar 

  • Park BJ, Lee DG, Yu JR, Jung SK, Choi K, Lee J, Kim YS, Lee JI, Kwon JY, Singson A, Song WK, Eom SH, Park CS, Kim DH, Bandyopadhyay J, Ahnn J (2001) Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol Biol Cell 12:2835–2845

    CAS  PubMed  Google Scholar 

  • Peterson JR, Ora A, Van PN, Helenius A (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184

    CAS  PubMed  Google Scholar 

  • Prokopenko SN, He Y, Lu Y, Bellen HJ (2000) Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics 156:1691–1715

    CAS  PubMed  Google Scholar 

  • Rauch F, Prud'homme J, Arabian A, Dedhar S, St-Arnaud R (2000) Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 256:105–111

    CAS  PubMed  Google Scholar 

  • Riesgo-Escovar J, Raha D, Carlson JR (1995) Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc Natl Acad Sci USA 92:2864–2868

    CAS  PubMed  Google Scholar 

  • Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422

    Article  PubMed  Google Scholar 

  • Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milán M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057

    PubMed  Google Scholar 

  • Rubin GM, Hong L, Brokstein P, Evans-Holm M, Frise E, Stapleton M, Harvey DA (2000) A Drosophila complementary DNA resource. Science 287:2222–2224

    Article  CAS  PubMed  Google Scholar 

  • Salzberg A, Prokopenko SN, He Y, Tsai P, Pál M, Maróy P, Glover DM, Deák P, Bellen HJ (1997) P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: mutations affecting embryonic PNS development. Genetics 147:1723–1741

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26

    CAS  PubMed  Google Scholar 

  • Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34

    CAS  PubMed  Google Scholar 

  • Störtkuhl KF, Kettler R (2001) Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc Natl Acad Sci USA 98:9381–9385

    Article  PubMed  Google Scholar 

  • Störtkuhl KF, Hovemann BT, Carlson JR (1999) Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J Neurosci 19:4839–4846

    PubMed  Google Scholar 

  • Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861

    CAS  PubMed  Google Scholar 

  • Venard R, Pichon Y (1984) Electrophysiological analysis of the peripheral response to odours in wild type and smell-deficient olf C mutant of Drosophila melanogaster. J Insect Physiol 30:1–5

    Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    CAS  PubMed  Google Scholar 

  • Wetzel CH, Behrendt HJ, Gisselmann G, Störtkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci USA 98:9377–9380

    Article  CAS  PubMed  Google Scholar 

  • Woodard C, Huang T, Sun H, Helfand SL, Carlson J (1989) Genetic analysis of olfactory behavior in Drosophila: a new screen yields the ota mutants. Genetics 123:315–326

    CAS  PubMed  Google Scholar 

  • Woodard C, Alcorta E, Carlson J (1992) The rdgB gene of Drosophila: a link between vision and olfaction. J Neurogenet 8:17–31

    CAS  PubMed  Google Scholar 

  • Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31:957–971

    CAS  PubMed  Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in Drosophila. Science 288:672–675

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lukasz Stelinski and James Miller for use of and assistance with an EAG recording facility and Sarah Elsea for the use of a Zeiss Axioplan microscope (Michigan State University). The pEP plasmid was kindly provided by Pernille Rørth (E.M.B.L., Heidelberg). The authors acknowledge the expert assistance of Ryan Lewandowski, Chris Garth, Julia Warner-Gargano and Arthur Wohlwill. The authors also thank Heather Eisthen and James Miller (Michigan State University), Marek Michalak (University of Alberta), Mani Ramaswami (University of Arizona) and John Carlson (Yale University) for critical reading of the manuscript. This project was supported by grants from the National Institute of Mental Health to M.S.G. (MH60787 and MH64160). All experiments comply with National Institute of Health principles of animal care and current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Grotewiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltzfus, J.R., Horton, W.J. & Grotewiel, M.S. Odor-guided behavior in Drosophila requires calreticulin. J Comp Physiol A 189, 471–483 (2003). https://doi.org/10.1007/s00359-003-0425-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0425-z

Keywords

Navigation