Skip to main content
Log in

A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A novel optical measurement technique is introduced and qualified which enables the simultaneous determination of the three-dimensional temperature field and the three components of the three-dimensional velocity field in microfluidic applications with only one camera. The temperature is obtained by evaluating the emission decay of individual luminescent polymer particles, whereas the velocity field can be calculated simultaneously from the flow-induced shift of individual particle images in time. To acquire the depth information, the well-established astigmatism particle-tracking velocimetry technique is employed. With this method, systematic errors caused by volume illumination and the reduced spatial resolution due to window averaging as in micro particle image velocimetry (µ-PIV) or laser-induced fluorescence (LIF) can be avoided. The technique can easily be optimized for the investigated temperature range and flow velocities and offers an exceptionally high spatial resolution and accuracy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abram C, Fond B, Beyrau F (2015) High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles. Opt Express 23:19453–19468

    Article  Google Scholar 

  • Abram C, Pougin M, Beyrau F (2016) Temperature field measurements in liquids using ZnO thermographic phosphor tracer particles. Exp Fluids 57:1–14

    Article  Google Scholar 

  • Aldén M, Omrane A, Richter M, Särner G (2011) Thermographic phosphors for thermometry: a survey of combustion applications. Prog Energy Combust Sci 37:422–461

    Article  Google Scholar 

  • Augustsson P, Barnkob R, Wereley ST, Bruus H, Laurell T (2011) Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab Chip 11:4152–4164

    Article  Google Scholar 

  • Cellini F, Peterson SD, Porfiri M (2017) Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water. Int J Smart Nano Mater 8:232–252

    Article  Google Scholar 

  • Cheng KC, Hwang GJ (1969) Numerical solution for combined free and forced laminar convection in horizontal rectangular channels. J Heat Transf 91:59–66

    Article  Google Scholar 

  • Cierpka C, Kähler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis 15:1–31

    Article  Google Scholar 

  • Cierpka C, Rossi M, Segura R, Kähler CJ (2010a) On the calibration of astigmatism particle tracking velocimetry for microflows. Meas Sci Technol 22:015401

    Article  Google Scholar 

  • Cierpka C, Segura R, Hain R, Kähler CJ (2010b) A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas Sci Technol 21:045401

    Article  Google Scholar 

  • Cierpka C, Lütke B, Kähler CJ (2013) Higher order multi-frame particle tracking velocimetry. Exp Fluids 54:1533

    Article  Google Scholar 

  • Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46:191–241

    Article  Google Scholar 

  • Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transf 48:3891–3920

    Article  Google Scholar 

  • Funatani S, Fujisawa N, Ikeda H (2004) Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume. Meas Sci Technol 15:983

    Article  Google Scholar 

  • Hiller WJ, Koch ST, Kowalewski TA (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263

    Article  Google Scholar 

  • Hoffmann J (2015) Taschenbuch der Messtechnik. Carl Hanser Verlag GmbH Co KG, Munich

    Book  Google Scholar 

  • Hu H, Koochesfahani M, Lum C (2006) Molecular tagging thermometry with adjustable temperature sensitivity. Exp Fluids 40:753–763

    Article  Google Scholar 

  • Hu H, Jin Z, Nocera D, Lum C, Koochesfahani M (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21:085401

    Article  Google Scholar 

  • Irwansyah R, Massing J, Cierpka C, Kähler CJ (2015) Investigation of the heat transfer in a square microchannel with Al2O3-H2O nanofluids. Tech Messen 82:572–577

    Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012a) On the resolution limit of digital particle image velocimetry. Exp Fluids 52:1629–1639

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012b) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52:1641–1656

    Article  Google Scholar 

  • Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57:1–71

    Article  Google Scholar 

  • Kestin J, Khalifa HE, Correia RJ (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 \(^\circ\)C and the pressure range 0.1-35 MPa. J Phys Chem Ref Data 10:71–88

    Article  Google Scholar 

  • Kiebert F, Wege S, Massing J, König J, Cierpka C, Weser R, Schimdt H (2017) 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Lab Chip 17:2104–2114

    Article  Google Scholar 

  • Kim M, Yoda M (2010) Dual-tracer fluorescence thermometry measurements in a heated channel. Exp Fluids 49:257–266

    Article  Google Scholar 

  • Kim M, Yoda M (2014) The spatial resolution of dual-tracer fluorescence thermometry in volumetrically illuminated channels. Exp Fluids 55:1–12

    Google Scholar 

  • Kimura I, Takamori T, Yamauchi H, Ozawa M, Takenaka N, Sakaguchi T (1988) Simultaneous measurement of flow and temperature fields based on color image information. Nagare No Kashika 8:185–188

    Google Scholar 

  • Luong TD, Phan VN, Nguyen NT (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluidics and Nanofluidics 10:619–625

    Article  Google Scholar 

  • Massing J, Kaden D, Kähler CJ, Cierpka C (2016) Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics. Meas Sci Technol 27:015301

    Article  Google Scholar 

  • Massing J, Kähler CJ, Cierpka C (2018) Vergleichende Analyse eines Ein- und Mehrkamerasystems zur simultanen, volumetrischen Temperatur-und Geschwindigkeitsmessung für die Mikrofluidik. tm-Technisches Messen 85:97–103

    Article  Google Scholar 

  • Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in microparticle image velocimetry. Meas Sci Technol 14:1047–1053

    Article  Google Scholar 

  • Ondrus V, Meier RJ, Klein C, Henne U, Schäferling M, Beifuss U (2015) Europium 1, 3-di (thienyl) propane-1, 3-diones with outstanding properties for temperature sensing. Sens Actuators A Phys 233:434–441

    Article  Google Scholar 

  • Ozbek H, Phillips SL (1980) Thermal conductivity of aqueous NaCl solutions from 20 to 330 \(^\circ\)C. J Chem Eng Data 25:263–267

    Article  Google Scholar 

  • Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45:2549–2565

    Article  Google Scholar 

  • Raffel M, Willert CE, Scarano F, Käler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, New York

    Book  Google Scholar 

  • Rossi M, Segura R, Cierpka C, Kähler CJ (2012) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52:1063–1075

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (2004) Measurement of temperature field of a Rayleigh-Bernard convection using two-color laser-induced fluorescence. Exp Fluids 37:331–340

    Article  Google Scholar 

  • Schiepel D, Schmeling D, Wagner C (2016) Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined Tomo-PIV and PIT. In: Proceedings of the 18th international symposium on application of laser and imaging techniques to fluid mechanics. Lisbon, Portugal, 4–7 July, pp 3216–3231

  • Schmeling D, Bosbach J, Wagner C (2015) Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV. Exp Fluids 56:134

    Article  Google Scholar 

  • Scott K, Taama WM, Kramer S, Argyropoulos P, Sundmacher K (1999) Limiting current behaviour of the direct methanol fuel cell. Electrochim Acta 45:945–957

    Article  Google Scholar 

  • Segura R, Cierpka C, Rossi M, Joseph S, Bunjes H, Kähler CJ (2013) Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics. Microfluid Nanofluidics 14:445–456

    Article  Google Scholar 

  • Segura R, Rossi M, Cierpka C, Kähler CJ (2015) Simultaneous three-dimensional temperature and velocity field measurements using astigmatic imaging of non-encapsulated thermo-liquid crystal (TLC) particles. Lab Chip 15:660–663

    Article  Google Scholar 

  • Shafii M, Lum C, Koochesfahani M (2010) In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification. Exp Fluids 48:651–662

    Article  Google Scholar 

  • Someya S, Li Y, Ishii K, Okamoto K (2011) Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles. Exp Fluids 50:65–73

    Article  Google Scholar 

  • Steinke ME, Kandlikar SG (2005) Single-phase liquid heat transfer in microchannels. In: ASME 3rd international conference on microchannels and minichannels, american society of mechanical engineers. Toronto, Canada, 13–15 June, pp 667–678

  • Tullius JF, Vajtai R, Bayazitoglu Y (2011) A review of cooling in microchannels. Heat Transf Eng 32:527–541

    Article  Google Scholar 

  • Vogt J, Stephan P (2012) Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields. Meas Sci Technol 23:105–306

    Article  Google Scholar 

  • Woods RJ, Scypinski S, Love LC (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56:1395–1400

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the ‘Arbeitsgemeinschaft industrieller Forschungsvereinigungen’ (AiF) under the grant ‘Schnellstart: Entwicklung eines Verfahrens zum gezielten Vorheizen einer Direkt-Methanol-Brennstoffzelle mit minimalem Energieaufwand’ (18941 N) and from the German Research Foundation (DFG), under the framework of the Emmy-Noether grant ‘Kontrollierte elektrochemische Energieumwandlung durch oberflächennahe Strömungsbeeinflussung’ (CI 185/3) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Massing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massing, J., Kähler, C.J. & Cierpka, C. A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging. Exp Fluids 59, 163 (2018). https://doi.org/10.1007/s00348-018-2616-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2616-y

Navigation