Skip to main content

Advertisement

Log in

Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Also known as 2-color planar laser-induced fluorescence or 2cPLIF.

  2. Images of droplet chains that suffer from motion blur show a jet-like structure with the diameter of the droplets.

  3. Pulsed 2D-2cLIF was already introduced for temperature measurements of a turbulent heated jet, where no MDRs arise, but fluorescence is saturated (Bruchhausen et al. 2005; Chaze et al. 2016).

  4. The quality factor of resonance modes is defined as Chen and Mohiuddin (1996): Q = 2π(stored energy)/(Energy lost per cycle)

  5. \(I^*(\lambda ) = I(\lambda )/I_\text{max}.\)

  6. Increasing the volume flow while keeping the droplet size constant requires adaption of the piezo frequency.

  7. See Sect. 3.2.

  8. Also known as QED-enhanced energy transfer.

  9. Assuming a fluorescence photon lifetime of 2 ns and a droplet size of \(10~\upmu {\hbox{m}}\) leads to a photon travel distance of 0.6 m and about 20.000 droplet circulations and thus to a significant increased probability of absorption.

  10. The droplet generator’s frequency accounts for 77 kHz.

  11. Local peaks of MDRs (Fig. 8, B2, magnification) can be used to calculate the droplet size (Anand et al. 2003; Chen and Mohiuddin 1996; Chang and Campillo 1996; Chýlek 1990). Such droplet size determination requires identification of each local peak as transverse electric (TE) mode or transverse magnetic (TM) mode of the resonance. This identification process is complex and only possible by comparison of experimental results and MDR simulations (Tang et al. 2011; Chen and Mohiuddin 1996). As a matter of fact, identified MDR modes may also be used to determine physical fluid properties such as refractive index, surface tension or viscosity (Chang and Campillo 1996). As long as liquid properties are known, their temperature dependency can be used for temperature measurement as well.

  12. As plot B2 indicates, several measurements were conducted with little excitation energy (minimum output: \(0.9~\hbox{W/cm}^2.\)

  13. The error becomes by definition, smaller for an increased number of images (n) by the factor 1/\(\sqrt{n}\). As the error reduces with every recorded droplet or image, statistical significance is inevitably reached at some point.

  14. Values of the maximum fluorescence intensity per droplet are shown in Figs. 8 and 10.

  15. Both diagrams do not contain any results for CW configuration, since motion blur prohibits identification of single droplets.

References

  • Anand M, Dharmadhikari A, Dharmadhikari J, Mishra A, Mathur D, Krishnamurthy M (2003) Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye. Chem Phys Lett 372(1–2):263. doi:10.1016/S0009-2614(03)00426-3

    Article  Google Scholar 

  • Arnold S (1996) Imaging enhanced energy transfer in a levitated aerosol particle. J Chem Phys 104(19):7741. doi:10.1063/1.471450

    Article  Google Scholar 

  • Arnold S, Holler S, Goddard NL (1997) Fluorescence microscopy and spectroscopy of an isolated micro-droplet. Mater Sci Eng: B 48(1–2):139. doi:10.1016/S0921-5107(97)00094-9

    Article  Google Scholar 

  • Arnold S (2001) Microspheres, photonic atoms and the physics of nothing. Am Sci 89(5):414. doi:10.1511/2001.5.414

    Article  Google Scholar 

  • Arnold S, Folan LM (1989) Energy transfer and the photon lifetime within an aerosol particle. Opt Lett 14(8):387. doi:10.1364/OL.14.000387

    Article  Google Scholar 

  • Bruchhausen M, Guillard F, Lemoine F (2005) Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF). Exp Fluids 38(1):123. doi:10.1007/s00348-004-0911-2

    Article  Google Scholar 

  • Castanet G, Lavieille P, Lebouch M, Lemoine F (2003) Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence. Exp Fluids 35(6):563. doi:10.1007/s00348-003-0702-1

    Article  Google Scholar 

  • Chang RK, Campillo AJ (eds) (1996) Optical processes in microcavities. Advanced series in applied physics. World Scientific. doi:10.1142/ASAP

  • Chaze W, Caballina O, Castanet G, Lemoine F (2016) The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows. Exp Fluids 57(4):1–18. doi:10.1007/s00348-016-2142-8

    Article  Google Scholar 

  • Chen G, Mazumder MM, Chang RK, Swindal JC, Acker WP (1996) Laser diagnostics for droplet characterization: application of morphology dependent resonances. Prog Energy Combust Sci 22(2):163. doi:10.1016/0360-1285(96)00003-2

    Article  Google Scholar 

  • Chýlek P (1990) Resonance structure of Mie scattering: distance between resonances. J Opt Soc Am A 7(9):1609

    Article  Google Scholar 

  • Coppeta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25(1):1. doi:10.1007/s003480050202

    Article  Google Scholar 

  • Deprédurand V, Miron P, Labergue A, Wolff M, Castanet G, Lemoine F (2008) A temperature-sensitive tracer suitable for two-colour laser-induced fluorescence thermometry applied to evaporating fuel droplets. Meas Sci Technol 19(10):105403. doi:10.1088/0957-0233/19/10/105403

    Article  Google Scholar 

  • Druger SD, Arnold S, Folan LM (1987) Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles. J Chem Phys 87(5):2649. doi:10.1063/1.453103

    Article  Google Scholar 

  • Dunand P, Castanet G, Lemoine F (2012) A two-color planar LIF technique to map the temperature of droplets impinging onto a heated wall. Exp Fluids 52(4):843. doi:10.1007/s00348-011-1131-1

    Article  Google Scholar 

  • Dunand P, Castanet G, Gradeck M, Lemoine F, Maillet D (2013) Heat transfer of droplets impinging onto a wall above the Leidenfrost temperature. Comptes Rendus Mécanique 341(1–2):75. doi:10.1016/j.crme.2012.11.006

    Article  Google Scholar 

  • Folan LM, Arnold S, Druger SD (1985) Enhanced energy transfer within a microparticle. Chem Phys Lett 118(3):322. doi:10.1016/0009-2614(85)85324-0

    Article  Google Scholar 

  • Hiller B, Hanson RK (1990) Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows. Exp Fluids 10(1):1. doi:10.1007/BF00187865

    Article  Google Scholar 

  • Kim HJ, Kihm KD (2002) Two-color (Rh-B & Rh-110) laser induced fluorescence (LIF) thermometry with sub-millimeter measurement resolution. J Heat Transf 124(4):596. doi:10.1115/1.1502633

    Article  Google Scholar 

  • Kwok AS, Serpenguzel A, Hsieh WF, Chang RK, Gillespie JB (1992) Two-photon-pumped lasing in microdroplets. Opt Lett 17(20):1435. doi:10.1364/OL.17.001435

    Article  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Boston. doi:10.1007/978-0-387-46312-4

    Book  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Virepinte JF, Lebouché M (2000) Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence. Exp Fluids 29(5):429. doi:10.1007/s003480000109

    Article  Google Scholar 

  • Lavieille P, Delconte A, Blondel D, Lebouch M, Lemoine F (2004) Non-intrusive temperature measurements using three-color laser-induced fluorescence. Exp Fluids 36(5):706. doi:10.1007/s00348-003-0748-0

    Article  Google Scholar 

  • Lemoine F, Wolff M, Lebouche M (1996) Simultaneous concentration and velocity measurements using combined laser-induced fluorescence and laser Doppler velocimetry: application to turbulent transport. Exp Fluids 20(5):319–327. doi:10.1007/BF00191013

    Article  Google Scholar 

  • Lemoine F, Antoine Y, Wolff M, Lebouche M (1999) Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA. Exp Fluids 26(4):315. doi:10.1007/s003480050294

    Article  Google Scholar 

  • Lemoine F, Castanet G (2013) Temperature and chemical composition of droplets by optical measurement techniques: a state-of-the-art review. Exp Fluids 54(7):1–34. doi:10.1007/s00348-013-1572-9

    Article  Google Scholar 

  • Leung PT, Young K (1988) Theory of enhanced energy tranfer in an aerosol particle. J Chem Phys 89(5):2894. doi:10.1063/1.454994

    Article  Google Scholar 

  • Maqua C, Castanet G, Lemoine F, Doué N, Lavergne G (2006) Temperature measurements of binary droplets using three-color laser-induced fluorescence. Exp Fluids 40(5):786. doi:10.1007/s00348-006-0116-y

    Article  Google Scholar 

  • Morrish D, Gan X, Gu M (2002) Observation of orthogonally polarized transverse electric and transverse magnetic oscillation modes in a microcavity excited by localized two-photon absorption. Appl Phys Lett 81(27):5132. doi:10.1063/1.1531222

    Article  Google Scholar 

  • Palmer J, Mathieu F, Reddemann M, Kneer R(2014) Temperature measurements of evaporating biofuel droplets. ILASS – Europe, 26th annual conference on liquid atomization and spray systems, Bremen - Germany (08–10 September 2014)

  • Perrin L, Castanet G, Lemoine F (2015) Characterization of the evaporation of interacting droplets using combined optical techniques. Exp Fluids 56(2):1–16. doi:10.1007/s00348-015-1900-3

    Article  Google Scholar 

  • Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26(1–2):7. doi:10.1007/s003480050260

    Article  Google Scholar 

  • Serpengüzel A, Arnold S, Griffel G, Lock JA (1997) Enhanced coupling to microsphere resonances with optical fibers. J Opt Soc Am B 14(4):790. doi:10.1364/JOSAB.14.000790

    Article  Google Scholar 

  • Serpenguzel A, Kucuksenel S, Chang R (2002) Microdroplet identification and size measurement in sprays with lasing images. Opt Express 10(20):1118. doi:10.1364/OE.10.001118

    Article  Google Scholar 

  • Sutton JA, Fisher BT, Fleming JW (2008) A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity. Exp Fluids 45(5):869. doi:10.1007/s00348-008-0506-4

    Article  Google Scholar 

  • Tang S, Li Z, Abate AR, Agresti JJ, Weitz DA, Psaltis D, Whitesides GM (2009) A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9(19):2767. doi:10.1039/b914066b

    Article  Google Scholar 

  • Tang SKY, Derda R, Quan Q, Lončar M, Whitesides GM (2011) Continuously tunable microdroplet-laser in a microfluidic channel. Opt Express 19(3):2204. doi:10.1364/OE.19.002204

    Article  Google Scholar 

  • Tzeng HM, Wall KF, Long MB, Chang RK (1984) Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra. Opt Lett 9(7):273. doi:10.1364/OL.9.000273

    Article  Google Scholar 

  • Tzeng HM, Wall KF, Long MB, Chang RK (1984) Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt Lett 9(11):499. doi:10.1364/OL.9.000499

    Article  Google Scholar 

  • van Ta D, Chen R, Sun HD (2013) Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci Rep 3:1362. doi:10.1038/srep01362

    Article  Google Scholar 

  • Walker DA (1987) A fluorescence technique for measurement of concentration in mixing liquids. J Phys E: Sci Instrum 20(2):217. doi:10.1088/0022-3735/20/2/019

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the excellence initiative of the German federal and state governments to promote science and research at German universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Palmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, J., Reddemann, M.A., Kirsch, V. et al. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer. Exp Fluids 57, 177 (2016). https://doi.org/10.1007/s00348-016-2253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2253-2

Keywords

Navigation