Skip to main content

Advertisement

Log in

Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bell JH (2004) Applications of pressure-sensitive paint to testing at very low flow speeds. In: 42nd AIAA aerospace sciences meeting and exhibit, AIAA 2004-0878. doi:10.2514/6.2004-878

  • Bergh H, Tijdeman H (1965) Theoretical and experimental results for the dynamic response of pressure measuring systems. National Aero- and Astronautical Research Institute, Amsterdam, NLR-TR F. 238

  • Broeren AP, Bragg MB (2001) Spanwise variation in the unsteady stalling flowfields of two-dimensional airfoil models. AIAA J 39:1641–1651. doi:10.2514/2.1501

    Article  Google Scholar 

  • Brown OC (2000) Low-speed pressure measurements using a luminescent coating system. Ph.D. dissertation, Stanford University

  • Cohen J, Schweizer T, Laxson A, Butterfield S, Schreck S, Fingersh L, Veers P, Ashwill T (2008) Technology improvement opportunities for low wind speed turbines and implications for cost of energy reduction, July 9, 2005–July 8, 2006. National Renewable Energy Laboratory, NREL TP-500-41036

  • Disotell KJ, Gregory JW (2011) Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system. Rev Sci Instrum 82:075112. doi:10.1063/1.3609866

    Article  Google Scholar 

  • Disotell KJ, Peng D, Juliano TJ, Gregory JW, Crafton JW, Komerath NM (2014) Single-shot temperature- and pressure-sensitive paint measurements on an unsteady helicopter blade. Exp Fluids 55:1671. doi:10.1007/s00348-014-1671-2

    Article  Google Scholar 

  • Disotell KJ, Nikoueeyan P, Naughton JW, Gregory JW (2015) Single-shot pressure-sensitive paint measurements of static and dynamic stall on a wind turbine airfoil. In: AHS 71st annual forum and technology display

  • Durgesh V, Naughton JW, Whitmore SA (2004) Experimental investigation of base drag reduction on a two-dimensional body using boundary layer manipulation. In: 42nd AIAA aerospace sciences meeting and exhibit, AIAA 2004-0904. doi:10.2514/6.2004-904

  • Gardner AD, Klein C, Sachs WE, Henne U, Mai H, Richter K (2014) Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint. Exp Fluids 55:1807. doi:10.1007/s00348-014-1807-4

    Article  Google Scholar 

  • Goss L, Trump D, Sarka B, Lydick L, Baker W (2000) Multi-dimensional time-resolved pressure-sensitive paint techniques: a numerical and experimental comparison. In: 37th AIAA aerospace sciences meeting and exhibit, AIAA-2000-0832. doi:10.2514/6.2000-832

  • Gregory JW, Sakaue H, Liu T, Sullivan JP (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu Rev Fluid Mech 56:303–330. doi:10.1146/annurev-fluid-010313-141304

    Article  MathSciNet  MATH  Google Scholar 

  • Juliano TJ, Kumar P, Peng D, Gregory JW, Crafton J, Fonov S (2011a) Single-shot, lifetime-based pressure-sensitive paint for rotating blades. Meas Sci Technol 22:085403. doi:10.1088/0957-0233/22/8/085403

    Article  Google Scholar 

  • Juliano TJ, Peng D, Jensen CD, Gregory JW, Liu T, Montefort J, Palluconi S, Crafton J, Fonov S (2011b) PSP measurements on an oscillating NACA 0012 airfoil in compressible flow. In: 41st AIAA fluid dynamics conference and exhibit, AIAA 2011-3728. doi:10.2514/6.2011-3728

  • Juliano TJ, Disotell KJ, Gregory JW, Crafton JW, Fonov SD (2012) Motion-deblurred, fast-response pressure-sensitive paint on a rotor in forward flight. Meas Sci Technol 23:045303. doi:10.1088/0957-0233/23/4/045303

    Article  Google Scholar 

  • Liu T (2003) Pressure-correction method for low-speed pressure-sensitive paint measurements. AIAA J 41:906–911. doi:10.2514/2.2026

    Article  Google Scholar 

  • Liu T (2004) Geometric and kinematic aspects of image-based measurements of deformable bodies. AIAA J 42:1910–1920. doi:10.2514/1.1960

    Article  Google Scholar 

  • Liu T, Sullivan JP (2005) Pressure and temperature sensitive paints. Springer, New York

    Google Scholar 

  • Manolesos M, Voutsinas SG (2014) Study of a stall cell using stereo particle image velocimetry. Phys Fluids 26:045101. doi:10.1063/1.4869726

    Article  Google Scholar 

  • McCroskey WJ (1982) Unsteady airfoils. Annu Rev Fluid Mech 14:285–311. doi:10.1146/annurev.fl.14.010182.001441

    Article  MATH  Google Scholar 

  • Mendoza DR (1997) Limiting Mach number for quantitative pressure-sensitive paint measurements. AIAA J 35:1240–1241. doi:10.2514/2.228

    Article  Google Scholar 

  • Naughton JW, Liu T (2007) Photogrammetry in oil-film interferometry. AIAA J 45:1620–1629. doi:10.2514/1.24634

    Article  Google Scholar 

  • Naughton JW, Strike J, Hind M, Magstadt A, Babbitt A (2013) Measurements of dynamic stall on the DU wind turbine airfoil series. In: AHS 69th annual forum and technology display

  • Pandey A, Gregory JW (2015) Step response characteristics of polymer/ceramic pressure-sensitive paint. Sensors 15:22304–22324. doi:10.3390/s150922304

    Article  Google Scholar 

  • Peng D, Jensen CD, Juliano TJ, Gregory JW, Crafton J, Palluconi S, Liu T (2013) Temperature-compensated fast pressure-sensitive paint. AIAA J 51:2420–2431. doi:10.2514/1.J052318

    Article  Google Scholar 

  • Sakaue H, Miyamoto K, Miyazaki T (2013) A motion-capturing pressure-sensitive paint method. J Appl Phys 113:084901. doi:10.1063/1.4792761

    Article  Google Scholar 

  • Strike JA, Hind MD, Saini MS, Naughton JW, Wilson MD, Whitmore SA (2010) Unsteady surface pressure reconstruction on an oscillating airfoil using the wiener deconvolution method. In: 27th AIAA aerodynamic measurement technology and ground testing conference, AIAA 2010-4799. doi:10.2514/6.2010-4799

  • Timmer WA, van Rooij RPJOM (2003) Summary of the delft university wind turbine dedicated airfoils. J Sol Energy Eng 125:488–496. doi:10.1115/1.1626129

    Article  Google Scholar 

  • Watkins AN, Leighty BD, Lipford WE, Wong OD, Goodman KZ, Crafton JW, Forlines A, Goss LP, Gregory JW, Juliano TJ (2012) Deployment of a pressure sensitive paint system for measuring global surface pressures on rotorcraft blades in simulated forward flight. In: 28th AIAA aerodynamics measurement technology and ground testing conference, AIAA 2012-2756. doi:10.2514/6.2012-2756

  • Watkins AN, Leighty BD, Lipford WE, Goodman KZ, Crafton JW, Gregory JW (2014) Applying pressure sensitive paint technology to rotor blades. NASA TM-2014-218259

  • Whitmore SA, Wilson MD (2011) Wiener deconvolution for reconstruction of pneumatically attenuated pressure signals. AIAA J 49:890–897. doi:10.2514/1.J050102

    Article  Google Scholar 

  • Winkelmann AE, Barlow JB (1980) Flow field model for a rectangular planform wing beyond stall. AIAA J 18:1006–1008. doi:10.2514/3.50846

    Article  Google Scholar 

  • Wong OD, Watkins AN, Goodman KZ, Crafton JW, Forlines A, Goss L, Gregory JW, Juliano TJ (2012) Blade tip pressure measurements using pressure sensitive paint. In: AHS 68th annual forum and technology display

  • Yon SA, Katz J (1998) Study of the unsteady flow features on a stalled wing. AIAA J 36:305–312. doi:10.2514/2.372

    Article  Google Scholar 

Download references

Acknowledgments

K. Disotell gratefully acknowledges the financial support of a Career Development Grant and Presidential Fellowship from The Ohio State University, as well as a National Science Foundation Graduate Research Fellowship, during the course of this work. The authors are grateful for additional support from the US Department of Energy (DESC0001261, Timothy J. Fitzsimmons) as well as a gift to the University of Wyoming from BP Alternative Energy North America, Inc. Finally, the anonymous reviewers are thanked for their comments which strengthened the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Disotell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disotell, K.J., Nikoueeyan, P., Naughton, J.W. et al. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number. Exp Fluids 57, 82 (2016). https://doi.org/10.1007/s00348-016-2175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2175-z

Keywords

Navigation