Skip to main content
Log in

Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Andriotis A, Gavaises M, Arcoumanis C (2008) Vortex flow and cavitation in diesel injector nozzles. J Fluid Mech 610:195–215. doi:10.1017/S0022112008002668

    Article  MATH  Google Scholar 

  • Baumgarten C (2006) Mixture formation in internal combustion engines. Springer, Berlin

    Google Scholar 

  • Blessing M, König G, Krüger C, Michels U, Schwarz V (2003) Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation. SAE technical paper 2003-01-1358. doi:10.4271/2003-01-1358

  • Bolla M, Srna A, Wright Y, von Rotz B, Herrmann K, Boulouchos K (2014) Influence of injector diameter (0.2–1.2 mm range) on diesel spray combustion: measurements and CFD simulations. SAE technical paper 2014-01-1419. doi:10.4271/2014-01-1419

  • Butcher AJ, Aleiferis PG, Richardson D (2013) Development of a real-size optical injector nozzle for studies of cavitation, spray formation and flash-boiling at conditions relevant to direct-injection spark-ignition engines. Int J Engine Res 14:557–577. doi:10.1177/1468087413497004

    Article  Google Scholar 

  • Chaves H (2008) Particle image velocimetry measurements of the cavitating flow in a real size transparent VCO nozzle. ILASS 2008, Como Lake, Italy, 8–10 September 2008. Paper no. ILASS08-7-1

  • Chaves H, Schuhbauer I (2005) Characterization of cavitation in transparent nozzles depending on nozzle geometry. ILASS 2005, Orleans, France, 4–7 Sept 2005

  • Chaves H, Schuhbauer I (2006) Cavitation in an asymmetric transparent real size VCO nozzle. Spray’06, Lampoldhausen, Germany. http://www.raumfahrtantriebe.de/spray2006/files/spray06_chaves_final_paper.pdf. Accessed 22 Dec 2014

  • Chaves H, Eberle A, Hofemeier P (2010) Micro-PIV for high velocity flows. In: 15th international symposia on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 5–8 July 2010. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2010/upload/1739_cwhcxe_2.5.5.Full_1739.pdf. Accessed 19 Dec 2014

  • Devasenathipathy S, Santiago JG, Wereley ST, Meinhart CD, Takehara K (2003) Particle imaging techniques for microfabricated fluidic systems. Exp Fluids 34:504–514. doi:10.1007/s00348-003-0588-y

    Article  Google Scholar 

  • Fansler TD, Parrish SE (2015) Spray measurement technology: a review. Meas Sci Technol 26:012002. doi:10.1088/0957-0233/26/1/012002

    Article  Google Scholar 

  • Farhat M, Chakravarty A, Field JE (2011) Luminescence from hydrodynamic cavitation. Proc R Soc A 467:591–606. doi:10.1098/rspa.2010.0134

    Article  Google Scholar 

  • Gavaises M, Andriotis A (2006) Cavitation inside multi-hole injectors for large diesel engines and its effect on the near-nozzle spray structure. SAE technical paper 2006-01-1114. doi:10.4271/2006-01-1114

  • Habchi C, Gillet N, Velghe A, Bohbot J, Schmid A, von Rotz B, Herrmann K (2014) On the role of cavitation in marine large diesel injector: numerical investigation of nozzle orifices eccentricity. ILASS 2014, Bremen, Germany, 8–10 Sept 2014. doi:10.13140/2.1.2017.7280

  • Hayashi T, Suzuki M, Ikemoto M (2012) Visualization of internal flow and spray formation with real size diesel nozzle. ICLASS 2012, Heidelberg, Germany, 2–6 September 2012. Paper no. 1193. http://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1193_b.pdf. Accessed 5 May 2015

  • Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Hillamo H, Sarjovaara T, Kaario O, Vuorinen V, Larmi M (2010) Diesel spray visualization and shockwaves. At Sprays 20:177–189. doi:10.1615/AtomizSpr.v20.i3.10

    Article  Google Scholar 

  • Hult J, Mayer S (2011) Adjustable focus laser sheet module for generating constant maximum width sheets for use in optical flow diagnostics. Meas Sci Technol 22:115305. doi:10.1088/0957-0233/22/11/115305

    Article  Google Scholar 

  • Hult J, Mayer S (2013) A methodology for laser diagnostics in large-bore marine two-stroke diesel engines. Meas Sci Technol 24:045204. doi:10.1088/0957-0233/24/4/045204

    Article  Google Scholar 

  • Hult J, Matlok S, Mayer S (2014a) Optical diagnostics of fuel injection and ignition in a marine two-stroke diesel engine. SAE Int J Engines 7:1195–1206. doi:10.4271/2014-01-1448 (SAE technical paper 2014-01-1448)

    Article  Google Scholar 

  • Hult J, Matlok S, Mayer S (2014b) Particle image velocimetry measurements of swirl and scavenging in a large marine two-stroke diesel engine. SAE technical paper 2014-01-1173. doi:10.4271/2014-01-1173

  • Imhof D, Takasaki K (2012) Visual combustion research using the rapid compression expansion machine. MTZ Ind 2:28–39. doi:10.1365/s40353-012-0037-6

    Google Scholar 

  • Ishibashi R, Tsuru D, Tajima H (2014) Effects of ambient pressure and temperature on penetration of a high compressed gas jet in high density conditions. ILASS 2014, Bremen, Germany, 8–10 September 2014. http://ilasseurope.org/events/26th-ilass-europe-2014/. Accessed 5 May 2015

  • Jollet S, Hansen H, Bitner K, Niemeyer D, Dinkelacker F (2014) Experimental and numerical investigations of 90 μm real-size transparent nozzles with high pressure conditions. ILASS 2014, Bremen, Germany, 8–10 September 2014. http://ilasseurope.org/events/26th-ilass-europe-2014/. Accessed 5 May 2015

  • Linne M (2013) Imaging in the optically dense regions of a spray: a review of developing techniques. Prog Energy Combust Sci 39:403–440. doi:10.1016/j.pecs.2013.06.001

    Article  Google Scholar 

  • Linne M, Sedarsky D, Meyer T, Gord J, Carter C (2010) Ballistic imaging in the near-field of an effervescent spray. Exp Fluids 49:911–923. doi:10.1007/s00348-010-0883-3

    Article  Google Scholar 

  • Mauger C, Méès L, Michard M, Lance M (2014) Velocity measurements based on shadowgraph-like image correlations in a cavitating micro-channel flow. Int J Multiph Flow 58:301–312. doi:10.1016/j.ijmultiphaseflow.2013.10.004

    Article  Google Scholar 

  • Mayer S, Poulsen HH, Hult J (2010) In-situ optical combustion diagnostics on a large two-stroke marine diesel engine. CIMAC congress 2010, Paper no. 40

  • Mayer S, Clausen S, Hult J, Nogenmyr K-J (2013) Advanced optical development tools for two-stroke marine diesel engines. CIMAC congress 2013. Paper no. 53

  • Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination fort two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814. doi:10.1088/0957-0233/11/6/326

    Article  Google Scholar 

  • Mitroglou N, Gavaises M, Nouri JM, Arcoumanis C (2011) Cavitation inside enlarged and real-size fully transparent injector nozzles and its effect on near nozzle spray formation. DIPSI Workshop 2011, Bergamo, Italy, 27 May 2011. http://openaccess.city.ac.uk/1507/3/DIPSI_2011_Mitroglou.pdf. Accessed 5 Nov 2015

  • Mitroglou N, McLorn M, Gavaises M, Soteriou C, Winterbourne M (2014) Instantaneous and ensemble average cavitation structures in diesel micro-channel flow orifices. Fuel 116:736–742. doi:10.1016/j.fuel.2013.08.060

    Article  Google Scholar 

  • Oda T, Iwaatani T, Takahashi N, Sumi T, Ohsawa K (2014) Behaviour of internal cavitating flow and primary spray breakup of a large-scaled VCO diesel nozzle with a small-lifted and eccentric needle. ILASS 2014, Bremen, Germany, 8–10 September 2014. http://ilasseurope.org/events/26th-ilass-europe-2014/. Accessed 5 May 2015

  • Payri R, Gimeno J, Marti-Aldaravi P, Venegas O (2012) Study of the influence of internal flow on the spray behaviour under cavitating conditions using a transparent nozzle. ICLASS 2012, Heidelberg, Germany, 2–6 September 2012. http://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1197_b.pdf. Accessed 8 Jan 2015

  • Payri R, Salvador Rubio FJ, Gimeno J, Venegas Pereira OH (2013) Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Exp Therm Fluid Sci 44:235–244. doi:10.1016/j.expthermflusci.2012.06.013

    Article  Google Scholar 

  • Raffel M, Willert CE, Werely ST, Kompenhans J (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin

    Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319. doi:10.1007/s003480050235

    Article  Google Scholar 

  • Sarjovaara T, Hillamo H, Larmi M, Olenius T (2008) Optical in-cylinder measurements of a large-bore medium-speed diesel engine. SAE technical paper 2008-01-2477. doi:10.4271/2008-01-2477

  • Sauer J (2000) Instationär kavitierende Strömungen—Ein neues Modell, basierend auf Front Capturing VOF und Blasendynamik. Dissertation, Universität Karlsruhe

  • Schmid A, von Rotz B, Bombach R, Weisser G, Herrmann K, Boulouchos K (2012) Ignition behaviour of marine diesel sprays. COMODIA 2012 conference, Paper no. CI1-2

  • Schmid A, von Rotz B, Schulz R, Harrmann K, Weisser G, Bombach R (2013) Influence of nozzle hole eccentricity on spray morphology. ILASS 2013, Chania, Greece, 1–4 September 2013. doi:10.13140/2.1.2128.3209

  • Schmid A, Habchi C, Bohbot J, von Rotz B, Herrmann K, Bombach R, Weisser G (2014) Influence of in-nozzle flow on spray morphology. ILASS 2014, Bremen, Germany, 8–10 Sept 2014. doi:10.13140/2.1.3176.8967

  • Schmidt DP, Corradini ML (2001) The internal flow of diesel fuel injector nozzles: a review. Int J Engine Res 2:1–22. doi:10.1243/1468087011545316

    Article  Google Scholar 

  • Schulz R, Herrmann K, von Rotz B, Hensel S, Seling F, Weisser G, Wright MY, Bolla M, Boulouchos K (2010) Assessing the performance of spray and combustion simulation tools against reference data obtained in a spray combustion chamber representative of large two-stroke diesel engine combustion systems. CIMAC congress 2010, Paper no. 247

  • Schulz R, Hensel S, von Rotz B, Schmid A, Herrmann K, Weisser G (2013) Development of spray and combustion simulation tools and application to large two-stroke diesel engine combustion systems. CIMAC congress 2013, Paper no. 259

  • Unfug F, Wagner U, Beck K, Pfeil J, Waldenmaier U, Celik O, Jaeschke J, Metzger J (2012) Investigation of fuel spray propagation, combustion and soot formation/oxidation in a single cylinder medium speed diesel engine. ASME technical paper ICEF2012-92038. doi:10.1115/ICEF2012-92038

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 284354 (Hercules C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hult.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie 1

High-speed movies of cavitation recorded at 224000 frames per second in the stationary flow rig, exposure time: 248 ns. View: 5.3×4.1 mm2. Cavitation number CN≈1.5 (AVI 3223 kb)

Movie 2

High-speed movies of cavitation recorded at 224000 frames per second in the stationary flow rig, exposure time: 248 ns. View: 5.3×4.1 mm2. Cavitation number CN≈4 (AVI 1652 kb)

Movie 3

High-speed movie of cavitation recorded at 400000 frames per second in the stationary flow rig, exposure time: 248 ns, view: 2.6×2.1 mm2 , CN≈4 (AVI 832 kb)

Movie 4

High-speed movie of cavitation structures at start of injection in the transient flow rig. High-speed video was recorded at 65500 frames per second. Image view: 3.0×2.7 mm2 (AVI 643 kb)

Movie 5

High-speed movie of orifice flow and spray formation during the initial transient of injection. High-speed video was acquired at 37500 frames per second. Image view: 7.3×7.3 mm2 (AVI 1437 kb)

Movie 6

High-speed shadowgraph movie of fuel injection, recorded in a 4T50ME-X engine running at 97.5 rpm. Frame rate: 20000 fps (0.03 CAD image separation). View: 11.3×9.8 mm2 (AVI 4392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hult, J., Simmank, P., Matlok, S. et al. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector. Exp Fluids 57, 49 (2016). https://doi.org/10.1007/s00348-016-2134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2134-8

Keywords

Navigation