Skip to main content

Advertisement

Log in

Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Araya D, Dabiri J (2015) A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp Fluids 56(7):150

    Article  Google Scholar 

  • Bachant P, Wosnik M (2014) Reynolds number dependence of cross-flow turbine performance and near-wake characteristics. In: 2nd marine energy technology symposium

  • Battisti L, Zanne L, Dell’Anna S, Dossena V, Persico G, Paradiso B (2011) Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. ASME J Energy Resour Technol 133(3):031201

    Article  Google Scholar 

  • Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri J (2014) Fluid–structure interaction modeling of vertical-axis wind turbines. J Appl Mech 81(8):081,006

    Article  Google Scholar 

  • Brochier G, Fraunie P, Beguier C, Paraschivoiu I (1986) Water channel experiments of dynamic stall on darrieus wind turbine blades. J Propuls Power 2(5):445–449

    Article  Google Scholar 

  • Castelli MR, Englaro A, Benini E (2011) The darrieus wind turbine: proposal for a new performance prediction model based on cfd. Energy 36(8):4919–4934

    Article  Google Scholar 

  • Coletti F, Elkins C, Eaton J (2013) An inclined jet in crossflow under the effect of streamwise pressure gradients. Exp Fluids 54(9):1–16

    Article  Google Scholar 

  • Dabiri J (2011) Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy 3(4):043104

    Article  Google Scholar 

  • Dixon K, Simão Ferreira C, Hofemann C, van Bussel G, van Kuik G (2008) A 3d unsteady panel method for vertical axis wind turbines. In: The proceedings of the European wind energy conference and exhibition Brussels

  • Dossena V, Persico G, Paradiso B, Battisti L, Dell’Anna S, Brighenti A, Benini E (2015) An experimental study of the aerodynamics and performance of a vertical axis wind turbine in a confined and unconfined environment. J Energy Resour Technol 137(5):051,207

    Article  Google Scholar 

  • Elkins C, Markl M, Pelc N, Eaton J (2003) 4d magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp Fluids 34(4):494–503

    Article  Google Scholar 

  • Ferreira C, van Kuik G, van Bussel G (2006) Wind tunnel hotwire measurements, flow visualization and thrust measurement of a vawt in skew. In: 44th AIAA aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics

  • Ferreira C, Hofemann C, Dixon K, van Kuik G, van Bussel G (2010) 3-d wake dynamics of the vawt: Experimental and numerical investigation. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, American Institute of Aeronautics and Astronautics

  • Fortunato B, Dadone A, Trifoni V (1995) A two-dimensional methodology to predict vertical axis wind turbine performance. J Solar Energy Eng 117(3):187–193

    Article  Google Scholar 

  • Hau E (2005) Wind turbines: fundamentals, technologies, application, economics. Springer, Berlin

    Google Scholar 

  • Hofemann C, Simão Ferreira C, Dixon K, van Bussel G, van Kuik G, Scarano F (2008) 3d stereo piv study of tip vortex evolution on a vawt. In: EWEC 2008-European wind energy conference—Brussels

  • Howell R, Qin N, Edwards J, Durrani N (2010) Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy 35(2):412–422

    Article  Google Scholar 

  • Kinzel M, Mulligan Q, Dabiri J (2012) Energy exchange in an array of vertical-axis wind turbines. J Turbul 13(38):1–13

    Google Scholar 

  • Laneville A, Vittecoq P (1986) Dynamic stall: the case of the vertical axis wind turbine. J Solar Energy Eng 108(2):140–145

    Article  Google Scholar 

  • McTavish S, Feszty D, Nitzsche F (2014) An experimental and computational assessment of blockage effects on wind turbine wake development. Wind Energy 17(10):1515–1529

    Article  Google Scholar 

  • Pelc N, Sommer F, Li K, Brosnan T, Herfkens R, Enzmann D (1994) Quantitative magnetic resonance flow imaging. Magn Reson Q 10(3):125–147

    Google Scholar 

  • Raciti Castelli M, De Betta S, Benini E (2012) Effect of blade number on a straight-bladed vertical-axis darreius wind turbine. World Acad Sci Eng Technol 61:305–311

    Google Scholar 

  • Rajagopalan R, Fanucci J (1985) Finite difference model for vertical axis wind turbines. J Propuls Power 1(6):432–436

    Article  Google Scholar 

  • Rolin V, Porté-Agel F (2015) Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry. In: Journal of physics: conference series, vol 625. IOP Publishing, p 012012

  • Roy S, Saha UK (2014) An adapted blockage factor correlation approach in wind tunnel experiments of a savonius-style wind turbine. Energy Conv Manag 86:418–427

    Article  Google Scholar 

  • Shamsoddin S, Porté-Agel F (2014) Large eddy simulation of vertical axis wind turbine wakes. Energies 7(2):890–912

    Article  Google Scholar 

  • Sørensen B (2004) Renewable energy: its physics, engineering, environmental impacts, economics & planning. Elsevier, London

    Google Scholar 

  • Whittlesey R, Liska S, Dabiri J (2010) Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir Biomim 5(3):035,005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding support from the Stanford Graduate Fellowship, the Northern California Chapter of the ARCS Foundation, the Gordon and Betty Moore Foundation through Grant No. GBMF2645, and the Office of Naval Research through Grant N000141211047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Ryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, K.J., Coletti, F., Elkins, C.J. et al. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine. Exp Fluids 57, 38 (2016). https://doi.org/10.1007/s00348-016-2122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2122-z

Keywords

Navigation