Skip to main content
Log in

Study on supersonic rectangular microjets using molecular tagging velocimetry

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In the present study, the characteristics of supersonic rectangular microjets are investigated experimentally using molecular tagging velocimetry. The jets are discharged from a convergent–divergent rectangular nozzle whose exit height is 500 μm. The jet Mach number is set to 2.0 for all tested jets, and the Reynolds number Re is altered from 154 to 5,560 by changing the stagnation pressure. The experimental results reveal that jet velocity decays principally due to abrupt jet spreading caused by jet instability for relatively high Reynolds numbers (Re > ~450). The results also reveal that the jet rapidly decelerates to a subsonic speed near the nozzle exit for a low Reynolds number (Re = 154), although the jet does not spread abruptly; i.e., a transition in velocity decay processes occurs as the Reynolds number decreases. A supersonic core length is estimated from the streamwise distribution of the centerline velocity, and the length is then normalized by the nozzle exit height and plotted against the Reynolds number. As a result, it is found that the normalized supersonic core length attains a maximum value at a certain Reynolds number near which the transition in the velocity decay process occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramovich GN (1963) The theory of turbulent jets. MIT Press, Cambridge

    Google Scholar 

  • Aniskin V, Mironov S, Maslov A (2013) Investigation of the structure of supersonic nitrogen microjets. Microfluid Nanofluidics 14:605–614

    Article  Google Scholar 

  • Bruccoleri AR, Leiter R, Drela M, Lozano P (2012) Experimental effects of nozzle geometry on flow efficiency at low Reynolds numbers. J Propuls Power 28:96–105

    Article  Google Scholar 

  • Castelain T, Sunyach M, Juvé D, Béra J-C (2008) Jet-noise reduction by impinging microjets: an acoustic investigation testing microjets parameters. AIAA J 46:1081–1087

    Article  Google Scholar 

  • Doms M, Muller J (2005) A micromachined vapor jet pump. Sens Actuators A 119:462–467

    Article  Google Scholar 

  • Fan M, Suzuki Y, Kasagi N (2006) Development of a large-entrainment-ratio axisymmetric supersonic ejector for micro butane combustor. J Micromech Microeng 16:S211–S219

    Article  Google Scholar 

  • Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids 21:092001

    Article  Google Scholar 

  • Handa T, Masuda M, Kashitani M, Yamaguchi Y (2011) Measurement of number densities in supersonic flows using a method based on laser-induced acetone fluorescence. Exp Fluids 50:1685–1694

    Article  Google Scholar 

  • Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40:1065–1070

    Article  Google Scholar 

  • Lempert WR, Boehem M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation of Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34:403–411

    Article  Google Scholar 

  • Mai C-C, Lin J (2002) Flow structures around an inclined substrate subjected to a supersonic impinging jet in laser cutting. Opt Laser Technol 34:479–486

    Article  Google Scholar 

  • Phalnikar KA, Kumar R, Alvi FS (2008) Experiments on free and impinging supersonic microjets. Exp Fluids 44:819–830

    Article  Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372

    Article  MATH  MathSciNet  Google Scholar 

  • Satoh D, Tanaka S, Yoshida K, Esashi M (2005) Micro-ejector to supply fuel–air mixture to a micro-combustor. Sens Actuators A 119:528–536

    Article  Google Scholar 

  • Scroggs SD, Settles GS (1996) An experimental study of microjets. Exp Fluids 21:401–409

    Article  Google Scholar 

  • Torre FL, Kenjeres S, Kleijn CR, Moerel JLPA (2010) Effects of wavy surface roughness on the performance of micronozzles. J Propuls Power 26:655–662

    Article  Google Scholar 

  • Walker SH, Thomas FO (1997) Experiments characterizing nonlinear shear layer dynamics in a supersonic rectangular jet undergoing screech. Phys Fluids 9:2562–2579

    Article  Google Scholar 

  • Willcox DC (1988) Reassessment of the scale determining equation for advanced turbulence models. AIAA J 26:1299–1310

    Article  MathSciNet  Google Scholar 

  • Willcox DC (1992) Dilatation-dissipation corrections for advanced turbulence models. AIAA J 30:2639–2646

    Article  Google Scholar 

  • Xie C (2007) Characteristics of micronozzle gas flows. Phys Fluids 19:037102

    Article  Google Scholar 

  • Yamamoto S, Daiguji H (1993) Higher-order-accurate upwind schemes for solving the compressible Euler and Navier–Stokes equations. Comput Fluids 22:259–270

    Article  MATH  MathSciNet  Google Scholar 

  • Yüceil KB, Ötügen MV (2002) Scaling parameters for underexpanded supersonic jets. Phys Fluids 14:4206–4215

    Article  Google Scholar 

  • Zhuang N, Alvi FS, Alkislar MB, Shin C (2006) Supersonic cavity flows and their control. AIAA J 44:2118–2128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Handa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, T., Mii, K., Sakurai, T. et al. Study on supersonic rectangular microjets using molecular tagging velocimetry. Exp Fluids 55, 1725 (2014). https://doi.org/10.1007/s00348-014-1725-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1725-5

Keywords

Navigation