Skip to main content
Log in

Analysis of flow and density oscillations in a swirl-stabilized flame employing highly resolving optical measurement techniques

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Modern aircraft engines operate with a reduced core air mass flow, which is challenging regarding an efficient and most of all stable combustion of fuel. A variable geometry burner investigated here allows a stable lean combustion with lower air mass flow rate than with a fixed geometry. In order to optimize such burners further, the occurring flame instabilities have to be investigated. This requires optical measurement techniques with a high measurement rate and an insensitivity regarding flame glow. Concerning flow velocity measurements, the frequency modulated Doppler global velocimetry (FM-DGV) fulfills these demands. In the swirl-stabilized flame of the variable geometry burner, spectra up to 2.5 kHz of the flow velocity field were obtained with FM-DGV. For example, a resonance peak at about 255 Hz was identified in the swirled flame, which also occurs in complementing density measurements by laser interferometric vibrometry. The combined analysis of velocity and density oscillations offer new insights into the physics of flame flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Albrecht H-E, Borys M, Damaschke N, Tropea C (2003) Laser Doppler and phase Doppler measurement techniques. Springer, Berlin

    Book  Google Scholar 

  • Beér JM, Chigier NA (1972) Combustion aerodynamics, 1st edn. Applied Science Publishers Ltd., Barking

    Google Scholar 

  • De Leo M, Saveliev A, Kennedy LA, Zelepouga SA (2003) Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J Propuls Power 19(5):735–750

    Article  Google Scholar 

  • De Leo M, Saveliev A, Kennedy LA, Zelepouga SA (2007) Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. Combust Flame 149(4):435–447

    Article  Google Scholar 

  • Dowling AP, Morgans AS (2005) Feedback control of combustion oscillations. Annu Rev Fluid Mech 37:151–182

    Article  MathSciNet  Google Scholar 

  • Fischer A, Büttner L, Czarske J (2011) Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell. Opt Commun 284:3060–3064

    Article  Google Scholar 

  • Fischer A, Büttner L, Czarske J, Eggert M, Grosche G, Müller H (2007) Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation. Meas Sci Technol 18:2529–2545

    Article  Google Scholar 

  • Fischer A, Büttner L, Czarske J, Eggert M, Müller H (2008) Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation. Appl Opt 47(21):3941–3953

    Article  Google Scholar 

  • Fischer A, Büttner L, Czarske J, Eggert M, Müller H (2009) Measurements of velocity spectra using time-resolving doppler global velocimetry with laser frequency modulation and a detector array. Exp Fluids 47:599–611

    Article  Google Scholar 

  • Fischer A, Büttner L, Czarske J, Gottschall M, Mailach R, Vogeler K (2010) Doppler global velocimetry with laser frequency modulation for the analysis of complex turbulent flows. Number 1.8.2, pp 1–13, Lissabon, 5–8. July 2010. 15th international symposium on applications of laser techniques to fluid mechanics

  • Fischer A, Haufe D, Büttner L, Czarske J (2011) Scattering effects at near-wall flow measurements using Doppler global velocimetry. Appl Opt 50(21):4068–4082

    Article  Google Scholar 

  • Fischer A, König J, Czarske J (2008) Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation. Meas Sci Technol 19:125402 (15 S.)

    Google Scholar 

  • Giuliani F, Leitgeb T, Lang A, Woisetschläger J (2010) Mapping the density fluctuations in a pulsed air-methane flame using laser-vibrometry. J Eng Gas Turbines Power 132:0316031 (p 8)

    Google Scholar 

  • Giuliani F, Wagner B, Woisetschläger J, Heitmeir F (2006) Laser vibrometry for real-time combustion stability diagnostics. In: ASME Turbo Expo 2006, Barcelona, Spain. GT2006-90413

  • Giuliani F, Woisetschläger J, Leitgeb T (2012) Design and validation of a burner with variable geometry for extended combustion range. In: ASME Turbo Expo 2012, Copenhagen, Denmark. GT2012-68236

  • Hampel B, Woisetschläger J (2006) Frequency- and space-resolved measurement of local density fluctuations in air by laser vibrometry. Meas Sci Technol 17:2835–2842

    Article  Google Scholar 

  • Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projections, 2nd edn. Springer, London

    Book  Google Scholar 

  • Hipp M, Reiterer P, Woisetschläger J, Philipp H, Pretzler G, Fliesser W, Neger T (1999) Application of interferometric fringe evaluation software at technical university graz. In: Procedings of SPIE, number 3745, pp 281–292

  • Hipp M, Woisetschläger J, Reiterer P, Neger T (2004) Digital evaluation of interferograms. J Meas 36(1):53–66

    Article  Google Scholar 

  • Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall PTR, New Jersey

    MATH  Google Scholar 

  • Köberl S, Fontaneto F, Giuliani F, Woisetschläger J (2010) Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis. Meas Sci Technol 21:035302 (p 10)

    Google Scholar 

  • Lang A, Leitgeb T, Woisetschläger J, Strzelecki A, Gajan P, Giuliani F (2008) Analysis of a pulsated flame at intermediate pressure. In: 13th international symposium on flow visualization, Nice, France

  • Lefebvre AH (1999) Gas turbine combust, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  • Leibovich S (1978) The structure of vortex breakdown. Annu Rev Fluid Mech 10:221–246

    Article  Google Scholar 

  • Leitgeb T, Schuller T, Durox D, Koeberl S, Woisetschlaeger J, Giuliani F (2013) Interferometric determination of heat release in a pulsated flame. Combust Flame

  • Lieuwen T (2003) Modeling premixed combustion-acoustic wave interactions: a review. J Propuls Power 19(5):765–781

    Article  Google Scholar 

  • Lira I (2002) Evaluating the measurement uncertainty: fundamentals and practical guidance. Taylor & Francis, New York

    Book  Google Scholar 

  • Nori VN, Seitzman JM (2009) CH* chemiluminescence modeling for combustion diagnostics. Proc Combust Inst 32(1):895–903

    Article  Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. R. T. Edwards, Inc., Graz

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Seitz P (2007) Photon-noise limited distance resolution of optical metrology methods. In: Osten W, Gorecki C, Novak EL (eds) Optical measurement systems for industrial inspection V, volume 6616, pp 66160D–1 – 66160D–10, Munich. SPIE conference proceedings

  • Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (pvc) in swirl combustion systems. Prog Energy Combust Sci 32:93–161

    Article  Google Scholar 

  • Wang S, Hsieh SY, Yang V (2005) Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions. Phys Fluids 17:045106 (p 13)

    Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG project Cz 55/22-1) and the Austrian Science Fund (FWF project 24096-N24) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A., König, J., Czarske, J. et al. Analysis of flow and density oscillations in a swirl-stabilized flame employing highly resolving optical measurement techniques. Exp Fluids 54, 1622 (2013). https://doi.org/10.1007/s00348-013-1622-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1622-3

Keywords

Navigation