Skip to main content
Log in

Endoscopic PIV measurements in a low pressure turbine rig

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Particle-Image-Velocimetry (PIV) is a useful way to acquire information about the flow in turbomachinery. Several premises have to be fulfilled to achieve high-quality data, for example, optical access, low vibrations and low reflections. However, not all test facilities comply with these requirements. If there is no optical access to the test area, measurements cannot be performed. The use of borescopic optics is a possible solution to this issue, as the access required is very small. Several different techniques can be used to measure the three components of the velocity vector, one of which is Stereo-PIV. These techniques require either large optical access from several viewing angles or highly complex setups. Orthogonal light sheet orientations in combination with borescopic optics using Planar-PIV can deliver sufficient information about the flow. This study will show the feasibility of such an approach in an enclosed test area, such as the interblade space in a Low-Pressure-Turbine-Rig. The results from PIV will be compared with data collected with conventional techniques, such as the Five-Hole-Probe and the 2-component Hot-Wire-Anemometry. An analysis of time- and phase-averaged data will be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Bruun HH (1995) Hot-wire anemometry: principles and signal analysis. Oxford University Press, New York

    Google Scholar 

  • Chaluvadi VSP, Kalfas AI, Banieghbal MR, Hodson HP, Denton JD (2001) Blade-row interaction in a high-pressure turbine. J Propuls Power 17:892–901

    Article  Google Scholar 

  • Denton JD (1993) The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. ASME J Turbomachinery 115:621–656

    Article  Google Scholar 

  • Denton JD (1999) Loss mechanisms in turbomachines. Turbomachinery blade design systems. In: Von Karman Institute Lecture Series, 1999–2002

  • Dierksheide U, Meyer P, Hovestadt T, Hentschel W (2001) Endoscopic 2D-PIV flow field measurements in IC engines. In: 4th International symposium on PIV, Göttingen, Germany, Sept 2001, PIV’01 Paper 1060

  • Geis T, Rottenkolber G, Dittmann M, Richter B, Dullenkopf K, Wittig S (2002) Endoscopic PIV-measurements in an enclosed rotor-stator system with pre-swirled cooling air. In: Proceedings of the 11th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, July 2002

  • Gindele J, Spicher U (1998) Investigation of in-cylinder flow inside IC engines using PIV with endoskopic optics. In: Proceedings of the 9th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, July 1998

  • Göttlich E, Woisetschläger J, Pieringer P, Hampel B, Heitmeir F (2006) Investigation of vortex shedding and wake-wake interaction in a transonic turbine stage using laser-doppler-velocimetry and particle-image-velocimetry. ASME J Turbomachinery 128:178–187

    Article  Google Scholar 

  • Heinke W, König S, Matyschok B, Stoffel B, Fiala A, Heinig K (2004) Experimental investigations on steady wake effects in a high-lift turbine cascade. Exp Fluids 37:448–496

    Article  Google Scholar 

  • Kawai T, Shinoki S, Adachi T (1989) Secondary flow control and loss reduction in a turbine cascade using endwall fences. JSME Int J Series II 32:375–387

    Google Scholar 

  • König S, Heidecke A, Stoffel B, Fiala A, Engel K (2004) Clocking effects in a 1.5-stage axial turbine—boundary layer behaviour at midspan. In: Proceedings of ASME turbo expo 2004: power for land, sea and air, Vienna, Austria, June 2004

  • Krause N, Zähringer K, Pap E (2005) Time-resolved particle image velocimetry for the investigation of rotating stall in a radial pump. Exp Fluids 39:192–201

    Article  Google Scholar 

  • Lang H, Mørck T, Woisetschläger J (2002) Stereoscopic particle image velocimetry in a transonic turbine stage. Exp Fluids 32:700–709

    Google Scholar 

  • Niehuis R, Lücking P, Stubert B (1989) Experimental and numerical study on basic phenomena of secondary flows in turbines. AGARD-CP-469

  • Perdichizzi A, Dossena V (1993) Incidence angle and pitch-chord effects on secondary flows downstream of a turbine cascade. ASME J Turbomachinery 115:383–391

    Article  Google Scholar 

  • Persico G, Gaetani P, Osnaghi C (2007) Effects of off-design operating conditions on the blade row interaction in a HP turbine stage. In: Proceedings of ASME turbo expo 2007: power for land, sea and air, Montreal, Canada, May 2007

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Reeves M, Lawson NJ (2004) On perspective errors in endoscopic PIV. CR Mec 332:687–692

    Article  Google Scholar 

  • Schlienger J, Kalfas AI, Abhari RS (2005) Vortex-wake-blade interaction in a shrouded axial turbine. ASME J Turbomachinery 127:699–707

    Article  Google Scholar 

  • Thaler G, Kuhn K, Jaberg H (2000) Sekundärströmung in schaufel(ring)gittern mit pfeilung und v-stellung - eine literaturstudie. Forschung im Ingenieurwesen 65:236–246

    Article  Google Scholar 

  • Tropea C, Yarin A, Foss JF (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin

    Book  Google Scholar 

  • Voges M, Beversdorff M, Willert C, Krain H (2007) Application of particle image velocimetry to a transonic centrifugal compressor. Exp Fluids 43:371–384

    Article  Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12

    Article  Google Scholar 

Download references

Acknowledgments

The project was sponsored by the Deutsche Forschungsgemeinschaft (German Research Foundation) via the Graduate School #1344 Unsteady System Modelling of Aircraft Engines. The suggestions made by the reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kegalj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kegalj, M., Schiffer, HP. Endoscopic PIV measurements in a low pressure turbine rig. Exp Fluids 47, 689–705 (2009). https://doi.org/10.1007/s00348-009-0712-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0712-8

Keywords

Navigation