Skip to main content
Log in

Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1: streaks

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Streaks play a major role in the process of turbulent generation. Numerous studies have been performed to characterize them, most of which used only single point measurements and only a few characteristics were studied. To investigate the streaks in more detail, a stereoscopic particle image velocimetry (SPIV) experiment was conducted to record 2D3C velocity fields in ten planes parallel to the wall from y + = 14.5 to y + = 48 at Reynolds number Re θ = 7,800 in a fully developed turbulent boundary layer along a flat plate. This study develops a method based on pattern recognition to detect streaks from velocity fields obtained by SPIV and characteristizes them in depth. The results are in good agreement with the previous studies and expand significantly the information about the characteristics of the streaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Achia BU, Thompson DW (1977) Structure of the turbulent boundary in drag-reducing pipe flow. J Fluid Mech 81:439–464

    Article  Google Scholar 

  • Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Article  MATH  MathSciNet  Google Scholar 

  • Bippes H (1972) Experimentelle untersuchung des laminar-turbulenten umschlags an einer parallel angestroemten konkaven wand. Heidelb Akad Wiss, Math Naturwiss Kl, pp 103–180

  • Blackwelder RF, Eckelmann H (1979) streamwise vortices associated with the bursting phenomenon. J Fluid Mech 94:577–594

    Article  Google Scholar 

  • Carlier J (2001) Etude des structures cohérentes de la turbulence de paroi á grand nombre de reynolds par vélocimétrie par images de particules. PhD Thesis, Univercity Lille 1

  • Carlier J, Stanislas M (2005) Experimental study of eddy structures in a turbulent boundary layer using paritcle image velocimetry. J Fluid Mech 535:143–188

    Article  MATH  MathSciNet  Google Scholar 

  • Coudert S, Schon JP (2001) Back projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas Sci Technol 12:1371–1381

    Article  Google Scholar 

  • Ganapathisubramani B, Longmire EK, Marusic I (2003) Characteristics of vortex packets in turbulent boundary layers. J Fluid Mech 478:35–46

    Article  MATH  Google Scholar 

  • Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524:57–80

    Article  MATH  Google Scholar 

  • Gupta AK, Laufer J, Kaplan RE (1971) Spatial structure in the viscous sublayer. J Fluid Mech 50:493–512

    Article  Google Scholar 

  • Hama FR (1954) Boundry layer characteristics for smooth and rough surfaces. Trans Soc Nav Arch Mar Eng 62:233–255

    Google Scholar 

  • Hastings NAJ, Peacock JB (1975) Statistical distribution: a handbook for students and practitioners. Wiley, New York

    Google Scholar 

  • Hutchins N, Hambleton WT, Marusic I (2005) Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J Fluid Mech 541:21–54

    Article  MATH  Google Scholar 

  • Johansson AV, Alfredsson PH, Kim J (1991) Evolution and dynamics of shear-layer structures in near-wall turbulence. J Fluid Mech 224:579–599

    Article  MATH  Google Scholar 

  • Kaehler CJ (2004) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp Fluids 36:114–130

    Article  Google Scholar 

  • Kline SJ (1978) The role of visualization in the study of the turbulent boundary layer. In: Smith CS, Abbott DE (eds) Workshop on coherent structure of turbulent boundary layers, Lehigh University, Bethlehem, PA, pp 1–26

  • Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Aeronaut Sci 30:741–773

    Google Scholar 

  • Kreplin HP, Eckelmann H (1979) Propagation of pertubations in the viscous sublayer and adjacent wall region. J Fluid Mech 59:305–322

    Article  Google Scholar 

  • Lagraa B, Labraga L, Mazouz A (2004) Characterization of low speed streaks in the near-wall region of a turbulent boundary layer. Eur J Mech B Fluids 23:587–599

    Article  MATH  Google Scholar 

  • Landahl MT (1990) On sublayer streaks. J Fluid Mech 212:593–614

    Article  MATH  Google Scholar 

  • Lee MJ, Eckelman L, Hanratty TJ (1974) Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient. J Fluid Mech 66:17–33

    Article  Google Scholar 

  • Lin J (2006) Etude détaillée des structures cohérentes de la zone tampon de la turbulence de paroi á l’aide de données de PIV stéréoscopique. PhD Thesis, Ecole centrale de Lille

  • Lin J, Laval JP, Foucaut JM, Pérenne N, Stanislas M (2008) Assessment of different SPIV processing methods for an application to near-wall turbulence. In: Schröder A, Willert CE (eds) Particle image velocimetry: new developments and recent applications. Topics in applied physics, vol 112. Springer, Berlin, pp 191–221

  • Matheron G (1975) Random sets and integral geometry. Wiley, New York

    MATH  Google Scholar 

  • Nakagawa H, Nezu I (1981) Structure of space time correlations of bursting phenomena in an open channel flow. J Aeronaut Sci 104:1–43

    Google Scholar 

  • Oldaker oK, Tiederman WJ (1977) Spatial structure of the viscous sublayer in drag-reducing channel flow. Phys Fluid 20:S133–S144

    Article  Google Scholar 

  • Pérenne N, Foucaut JM, Savatier J (2004) Study of the accuracy of different stereoscopic reconstruction algorithms. In: Stanislas M, Westerweel J, Kompenhans J (eds) Proceedings of the EUROPIV 2 workshop on particle image velocimetry, Zaragoza, Spain, March 31–April 1, 2003. Springer, Berlin, pp 375–390

  • Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev J Fluid Mech 23:601–639

    Article  Google Scholar 

  • Runstadler PC, Kline SJ, Reynolds WC (1963) Department of Mechanical Engineering, MD-8, Stanford University Report

  • Schraub FA, Kline SJ (1965) A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Thermosciences Division, MD-12, Stanford University Report

  • Smith CR, Metzler SP (1983) The characteristics of low speed streaks in the near wall region of a turbulent boundary layer. J Aeronaut Sci 129:27–54

    Google Scholar 

  • Soloff S, Adrian R, Liu Z (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454

    Article  Google Scholar 

  • Suzuki Y, Kasagi N (1993) Drag reduction mechanism on micro-grooved riblet surface. In: International conference on near-wall turbulent flows, Tempe, Arizona, 15–17 March 1993

  • Talmon AM, Kunen JMG, Ooms G (1986) Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer. J Fluid Mech 163:459–478

    Article  Google Scholar 

  • Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74

    Article  MATH  Google Scholar 

  • Weisstein EW (1999) Normal distribution. MathWorld—a Wolfram web resource

  • Westerweel J, van Oord J (1999) Stereoscopic PIV measurements in a turbulent boundary layer. In: Stanislas M et al (eds) EUROPIV: progress towards industrial application. Kluwer, Dordrecht, pp 459–478

  • Willert C (1997) Stereoscopic digital particle image velocimetry for applications in wind tunnel flows. Meas Sci Technol 8:1465–1479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stanislas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Laval, J.P., Foucaut, J.M. et al. Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1: streaks. Exp Fluids 45, 999–1013 (2008). https://doi.org/10.1007/s00348-008-0522-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0522-4

Keywords

Navigation