Skip to main content
Log in

m4-muskarinerge Rezeptoren der Hornhaut

Hemmung des kornealen cAMP-PKA-Signalweges durch Stimulation muskarinerger Cholinozeptoren

m4 Muscarinic receptors of the cornea

Muscarinic cholinoceptor-stimulated inhibition of the cAMP-PKA pathway in corneal epithelial and endothelial cells

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Muskarinerge Cholinozeptoren lassen sich im gesamten Auge, nicht zuletzt in der Hornhaut nachweisen. Die jüngste Forschung hat sich überwiegend mit dem m5-Subtyp beschäftigt, obwohl mehrfach auch über das Vorkommen des m2- bzw. m4-Subtypes in kornealen Geweben berichtet wurde. Ziel der vorliegenden Arbeit war der Nachweis einer verminderten cAMP-Bildung und einer reduzierten Proteinkinase-A-Aktivität (PKA) nach Stimulation von m2- bzw. m4-Cholinozeptoren in bovinem Hornhautepithel und -endothel.

Material und Methoden

Der Nachweis muskarinerger Cholinozeptoren erfolgte mittels polyklonaler Antikörper. Die cAMP-Konzentration wurde mit einem handelsüblichen Enzymimmunoassay bestimmt, die PKA-Aktivität anhand des Verbrauchs von ATP ermittelt.

Ergebnisse

Immunhistochemie, Immunfluoreszenz und Western-Blot zeigten das Vorkommen des m4-Cholinozeptors. Der m2-Subtyp ließ sich an bovinen kornealen Epithel- und Endothelzellen nicht nachweisen. Ferner ließ sich eine dosisabhängige Hemmung der cAMP-Bildung sowie der PKA-Aktivität nach Stimulation mit Acetylcholin aufzeigen (p<0,001).

Schlussfolgerung

Die vorliegenden Ergebnisse zeigen eine Hemmung des cAMP-PKA-Signalweges nach Stimulation muskarinerger m4-Cholinozeptoren in bovinen Hornhautepithel und -endothelzellen. Über die physiologische Rolle dieses Signalweges kann allerdings derzeit nur spekuliert werden.

Abstract

Background

Muscarinic cholinoceptors have been found in all types of ocular tissue, e.g. in corneal epithelium and endothelium. Latest research has focused only on the m5 cholinoceptor subtype. However, previous studies have also indicated the presence of m2 or m4 receptor subtypes in corneal tissue. The aim of this study was to show the decrease of intracellular cAMP formation and protein kinase A (PKA) activity after stimulation of m2 or m4 cholinoceptors in bovine corneal epithelial and endothelial cells.

Materials und methods

Muscarinic cholinoceptors were studied using polyclonal antibodies. The cAMP concentration was determined with an enzyme immunoassay and PKA activity was estimated by the consumption of ATP.

Results

Immunocytochemistry, immunofluorescence and immunoblotting revealed the presence of the m4 muscarinic cholinoceptor subtype but not of the m2 receptor subtype in bovine corneal epithelial and endothelial cells. In bovine corneal epithelium and endothelium protein cAMP formation was decreased and PKA activity was inhibited by acetylcholine in a dose-dependent manner (p<0.001).

Conclusion

The findings indicate that stimulation of m4 muscarinic cholinoceptors inhibits the cAMP-PKA pathway in corneal epithelial and endothelial cells resulting in decreased protein kinase A activity. Further work will be needed to clarify the physiological role of this signaling pathway in corneal epithelium and endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Baratz KH, Proia AD, Klintworth GK (1987) Cholinergic stimulation of phosphatidylinositol hydrolysis by rat corneal epithelium in vitro. Curr Eye Res 6:691–701

    Article  PubMed  CAS  Google Scholar 

  2. Bonner TI (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci 12:148–151

    Article  PubMed  CAS  Google Scholar 

  3. Cavanagh HD, Colley AM (1982) Cholinergic, adrenergic and PGE1 effects on cyclin nucleotides and growth in cultured corneal epithelium. Metab Pediatr Syst Ophthalmol 6:63–74

    PubMed  CAS  Google Scholar 

  4. Colley AM, Cavanah HD (1982) Binding of [3H]dihydroalprenolol and [3H]quinuclidinyl benzilate to intact cells of cultured corneal epithelium. Metab Pediatr Syst Ophthalmol 6:75–86

    PubMed  CAS  Google Scholar 

  5. Durieux ME (1996) Muscarinic signaling in the central nervous system: recent developments and anesthetic implications. Anesthesiology 84:173–189

    Article  PubMed  CAS  Google Scholar 

  6. Grueb M, Bartz-Schmidt KU, Rohrbach JM (2008) Adrenergic regulation of cAMP-PKA pathway in corneal epithelium and endothelium. Ophthalmic Res 40:322–328

    Article  PubMed  CAS  Google Scholar 

  7. Grueb M, Leitritz M, Mielke J et al (2006) Einfluss von Timolol auf die zentrale Hornhautdicke und Endothelzelldichte. Klin Monatsbl Augenheilkd 223:894–898

    Article  Google Scholar 

  8. Grueb M, Mielke J, Bartz-Schmidt KU, Rohrbach JM (2007) Muscarinic cholinozeptor-stimulated phosphatidyl inositol pathway in corneal epithelial and endothelial cells. Graefes Arch Clin Exp Ophthalmol 245:595–599

    Article  PubMed  CAS  Google Scholar 

  9. Grueb M, Wallenfels-Thilo B, Mielke J et al (2006) Muscarinic acetylcholine receptor subtypes in human corneal epithelium and endothelium. Graefes Arch Clin Exp Ophthalmol 244:1191–1195

    Article  PubMed  CAS  Google Scholar 

  10. Jumblatt MM, Neufeld AH (1983) Beta-adrenergic and serotonergic responsiveness of rabbit corneal epithelial cells in culture. Invest Ophthalmol Vis Sci 24:1139–1143

    PubMed  CAS  Google Scholar 

  11. Neufeld AH, Jumblatt MM, Esser KA et al (1984) Beta-adrenergic and serotonergic stimulation of rabbit corneal tissues and cultured cells. Invest Ophthalmol Vis Sci 25:1235–1239

    PubMed  CAS  Google Scholar 

  12. Nietgen GW, Schmidt J, Hesse L et al (1999) Muscarinic receptor functioning and distribution in the eye. Eye 13:285–300

    Article  PubMed  Google Scholar 

  13. Olsen JS, Neufeld AH (1979) The rabbit cornea lacks cholinergic receptors. Invest Ophthalmol Vis Sci 18:1216–1225

    PubMed  CAS  Google Scholar 

  14. Pradelles P, Grassi J, Chabardes D (1989) Enzyme immunoassays of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate using acetylcholinesterase. Anal Chem 61:447–452

    Article  PubMed  CAS  Google Scholar 

  15. Romano AC, Espana EM, Yoo SH et al (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal mcicroscopy and flow cytometry. Invest Ophthalol Vis Sci 44:5125–5129

    Article  Google Scholar 

  16. Sakaki Y, Fukuda Y, Yamashita M (1996) Muscarinic and purinergic Ca2+ mobilisations in the neural retina of early embryonic chick. Int J Dev Neurosci 14:691–699

    Article  PubMed  CAS  Google Scholar 

  17. Shepard AR, Rae JL (1998) Ion transporters and receptors in cDNA libraries from lens and cornea epithelia. Curr Eye Res 17:708–719

    Article  PubMed  CAS  Google Scholar 

  18. Socci RR, Tachado SD, Aronstam RS (1996) Characterization of the muscarinic receptor subtypes in the bovine corneal epithelial cells. J Ocul Pharmacol Ther 12:259–269

    Article  PubMed  CAS  Google Scholar 

  19. Stevenson RW, Wilson WS (1975) The effect of acetylcholine and eserine on the movement of Na+ across the corneal epithelium. Exp Eye Res 21:245–247

    Article  Google Scholar 

  20. Walkenbach RJ, Chao WT, Bylund DB, Gibbs SR (1985) Characterization of beta-adrenergic receptors in fresh and primary cultured bovine corneal endothelium. Exp Eye Res 40:15–21

    Article  PubMed  CAS  Google Scholar 

  21. Walkenbach RJ, Ye GS (1991) Muscarinic cholinozeptor regulation of cyclic guanosine monophosphate in human corneal epithelium. Invest Ophthalmol Vis Sci 32:610–615

    PubMed  CAS  Google Scholar 

  22. Walkenbach RJ, Ye GS (1990) Muscarinic receptors and their regulation of cyclic GMP in corneal endothelial cells. Invest Ophthalmol Vis Sci 31:702–707

    PubMed  CAS  Google Scholar 

  23. Walkenbach RJ, Ye GS, Reinach PS (1991) Alpha-1 adrenozeptors in human corneal epithelium. Invest Ophthalmol Vis Sci 32:3067–3072

    PubMed  CAS  Google Scholar 

  24. Wang HZ, Hong SJ, Wu KY (2000) Change of calcium and cAMP concentration by adrenozeptor agents in cultured porcine corneal endothelial cells. J Ocul Pharmacol Ther 16:299–309

    Article  PubMed  Google Scholar 

  25. Yamashita M, Fukuda Y (1993) Incurvation of early embryonic neural retina by acetylcholine through muscarinic receptors. Neurosci Lett 163:215–218

    Article  PubMed  CAS  Google Scholar 

  26. Ye GS, Walkenbach RJ, Reinach PS (1990) Alpha1-adrenergic receptors in human corneal epithelium. Invest Ophthalmol Vis Sci 31:466

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grüb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grüb, M., Mielke, J. & Rohrbach, J. m4-muskarinerge Rezeptoren der Hornhaut. Ophthalmologe 108, 651–657 (2011). https://doi.org/10.1007/s00347-011-2356-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-011-2356-3

Schlüsselwörter

Keywords

Navigation