Skip to main content
Log in

Virale und nichtvirale Gentherapieansätze zur Behandlung von Netzhauterkrankungen

Viral and nonviral gene therapy for treatment of retinal diseases

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Für die Behandlung von Netzhauterkrankungen eröffnet der Einsatz der Gentherapie neue Perspektiven. Die Verwendung von verschiedenartigen Oligonukleotiden oder viralen Expressionsvektoren erlaubt die Entwicklung von neuen Heilungsstrategien für Neovaskularisierungskrankheiten und retinale Degeneration. Therapeutische Oligonukleotide („Antisense“-Oligonukleotide, Aptamere und siRNA) können den gezielten Abbau von Transkripten und damit die Konzentrationsabnahme eines an der Pathogenese beteiligten Proteins induzieren. Dagegen wird mit viralen Vektoren (rAAV und Lentivirus) häufig die Funktion eines defekten Gens durch die eines gesunden ersetzt und so die Ursache der Krankheit bekämpft. Die an Tiermodellen erfolgreich angewandten Gentherapien führten bereits zur Entwicklung von Medikamenten, und weitere werden zurzeit klinisch erprobt.

Abstract

The development of gene therapeutic approaches offers new perspectives for the treatment of retinal diseases. The use of both, nonviral methods employing oligonucleotides as well as viral expression vectors provide the possibility to treat neovascularization defects and retinal degeneration, respectively. The mechanism by which the therapeutic oligonucleotides (antisense oligonucleotides, aptamers and siRNA) work is based on degradation of specific transcripts. Consequently, a reduction of the corresponding protein, which is involved in the particular pathogenesis, follows. In contrast, viral vector transduction can substitute the disease-associated gene with an intact copy. So far, animal models have successfully contributed to the development of gene therapeutic medication and further treatments are at the recruiting phase of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Acland GM, Aguirre GD, Ray J et al. (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95

    PubMed  Google Scholar 

  2. Ali RR, Reichel MB, Thrasher AJ et al. (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 5:591–594

    PubMed  Google Scholar 

  3. Ali RR, Sarra GM, Stephens C et al. (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310

    PubMed  Google Scholar 

  4. Bennett J (2003) Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 10:977–982

    PubMed  Google Scholar 

  5. Bennett J, Maguire AM, Cideciyan AV et al. (1999) Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci U S A 96:9920–9925

    PubMed  Google Scholar 

  6. Bhisitkul RB, Robinson GS, Moulton RS et al. (2005) An antisense oligodeoxynucleotide against vascular endothelial growth factor in a nonhuman primate model of iris neovascularization. Arch Ophthalmol 123:214–219

    PubMed  Google Scholar 

  7. Bock PJ, Markovitz DM (2001) Infection with HIV-2. AIDS 15 [Suppl 5]:S35–S45

    Article  Google Scholar 

  8. Caplen NJ, Mousses S (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 1002:56–62

    PubMed  Google Scholar 

  9. Danis R, Criswell M, Orge F, Wancewicz E, Stecker K, Henry S, Monia B (2003) Intravitreous anti-raf-1 kinase antisense oligonucleotide as an angioinhibitory agent in porcine preretinal neovascularization. Curr Eye Res 26:45–54

    PubMed  Google Scholar 

  10. Garrett KL, Shen WY, Rakoczy PE (2001) In vivo use of oligonucleotides to inhibit choroidal neovascularisation in the eye. J Gene Med 3:373–383

    PubMed  Google Scholar 

  11. Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    PubMed  Google Scholar 

  12. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    PubMed  Google Scholar 

  13. Holen T, Mobbs CV (2004) Lobotomy of genes: use of RNA interference in neuroscience. Neuroscience 126:1–7

    PubMed  Google Scholar 

  14. Jansen B, Zangemeister-Wittke U (2002) Antisense therapy for cancer — the time of truth. Lancet Oncol 3:672–683

    PubMed  Google Scholar 

  15. Kim B, Tang Q, Biswas PS et al. (2004) Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 165:2177–2185

    PubMed  Google Scholar 

  16. Koller E, Gaarde WA, Monia BP (2000) Elucidating cell signaling mechanisms using antisense technology. Trends Pharmacol Sci 21:142–148

    PubMed  Google Scholar 

  17. Koulu M, Movafagh S, Tuohimaa J et al. (2004) Neuropeptide Y and Y2-receptor are involved in development of diabetic retinopathy and retinal neovascularization. Ann Med 36:232–240

    PubMed  Google Scholar 

  18. Lai CM, Yu MJ, Brankov M et al. (2004) Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue. Genet Vaccines Ther 2:3

    PubMed  Google Scholar 

  19. Lotery AJ, Derksen TA, Russell SR et al. (2002) Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors. Hum Gene Ther 13:689–696

    PubMed  Google Scholar 

  20. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101:16–22

    PubMed  Google Scholar 

  21. Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A 94:10319–10323

    PubMed  Google Scholar 

  22. Narfstrom K, Katz ML, Bragadottir R et al. (2003) Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 44:1663–1672

    PubMed  Google Scholar 

  23. Quinonez R, Sutton RE (2002) Lentiviral vectors for gene delivery into cells. DNA Cell Biol 21:937–951

    PubMed  Google Scholar 

  24. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    PubMed  Google Scholar 

  25. Rolling F (2004) Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 11 [Suppl 1]:S26–S32

    PubMed  Google Scholar 

  26. Sarra GM, Stephens C, de Alwis M, Bainbridge JW, Smith AJ, Thrasher AJ, Ali RR (2001) Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 10:2353–2361

    PubMed  Google Scholar 

  27. Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR (2003) AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 8:188–195

    PubMed  Google Scholar 

  28. Streilein JW (1987) Immune regulation and the eye: a dangerous compromise. FASEB J 1:199–208

    PubMed  Google Scholar 

  29. Takahashi K, Luo T, Saishin Y et al. (2002) Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther 13:1305–1316

    PubMed  Google Scholar 

  30. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    PubMed  Google Scholar 

  31. Vollrath D, Feng W, Duncan JL et al. (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 98:12584–12589

    PubMed  Google Scholar 

  32. White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos CD, Sullenger BA (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci U S A 100:5028–5033

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Klöckener-Gruissem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neidhardt, J., Wycisk, K. & Klöckener-Gruissem, B. Virale und nichtvirale Gentherapieansätze zur Behandlung von Netzhauterkrankungen. Ophthalmologe 102, 764–771 (2005). https://doi.org/10.1007/s00347-005-1245-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-005-1245-z

Schlüsselwörter

Keywords

Navigation