Skip to main content
Log in

Overexpression of CiMYC2 Transcription Factor from Chrysanthemum indicum var. aromaticum Resulted in Modified Trichome Formation and Terpenoid Biosynthesis in Transgenic Tobacco

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chrysanthemum indicum var. aromaticum (C. indicum var. aromaticum) is an important aromatic plant resource in the Chrysanthemum genus, and the main substance of its aroma is terpenoids. Myelocytomatosis 2 (MYC2) is essential for the JA response to the accumulation of secondary metabolites in several plants. However, there are few reports on the regulation of terpenoid secondary metabolism and the improvement of aromatic characters by Chrysanthemum MYC2 transcription factor. In this study, a C. indicum var. aromaticum MYC2 transcription factor, CiMYC2, was induced by methyl jasmonate and preferentially expressed in leaves. The overexpression of CiMYC2 in tobacco resulted in shorter plant height, darker leaf color, higher chlorophyll and carotenoid content, more long-handle trichomes and short-handle trichomes, and higher terpenes content compared with wild-type (WT) and empty vector (EV) lines. More importantly, some novel terpenes were detected in CiMYC2 transgenic tobacco lines, whereas no corresponding substances were detected in WT and EV lines. In addition, transcriptional analyses revealed that the expression levels of genes involved in the terpenoids biosynthesis pathways were higher in transgenic tobacco lines than those in the WT and EV lines. Results indicated that CiMYC2 may be a key regulator for terpenoids biosynthesis in C. indicum var. aromaticum plants. The research results will provide theoretical basis for creating high terpene aromatic materials and cultivating new varieties of aromatic chrysanthemum using transgenic engineering technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An J-P et al (2016) The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Biochem 108:24–31

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj K et al (2020) Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phytother Res 34(11):2889–2910

    Article  CAS  PubMed  Google Scholar 

  • Boter M et al (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18(13):1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broun P et al (2006) Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev 5(1):27–38

    Article  CAS  Google Scholar 

  • Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276(17):4682–4692

    Article  CAS  PubMed  Google Scholar 

  • Fan S et al (2018) GC-MS analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules 23(3):576

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller A et al (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  CAS  PubMed  Google Scholar 

  • Fiocco D et al (2016) Chemical composition and the anti-melanogenic potential of different essential oils. Flavour Fragr J 31(3):255–261

    Article  CAS  Google Scholar 

  • Gao W et al (2020) Transcriptional responses for biosynthesis of flavor volatiles in methyl jasmonate-treated Chrysanthemum indicum var. aromaticum leaves. Ind Crop Prod 147:112254

    Article  CAS  Google Scholar 

  • Gupta N, Prasad VBR, Chattopadhyay S (2014) LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC Plant Biol 14(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • He M et al (2015) Dendranthema indicum var. aromaticum epidermal hairs and glandular hair secretions. J Northeast for Univ 43(9):117–120

    CAS  Google Scholar 

  • Hong G-J et al (2012) Arabidopsis MYC2 interacts with della proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsch RB et al (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231

    Article  CAS  Google Scholar 

  • Ignea C et al (2018) Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat Chem Biol 14(12):1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(3):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jiao J et al (2022) Identification of genes associated with biosynthesis of bioactive flavonoids and taxoids in Taxus cuspidata Sieb. et Zucc. plantlets exposed to UV-B radiation. Gene 823:146384

    Article  CAS  PubMed  Google Scholar 

  • Lanning NJ et al (2017) Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer & Metabolism 5:6

    Article  Google Scholar 

  • Li G et al (2018) Non-plastidial expression of a synthetic insect geranyl pyrophosphate synthase effectively increases tobacco plant biomass. J Plant Physiol 221:144–155

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2019a) MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31(1):106–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D et al (2019b) Transcriptome analysis of two cultivars of tobacco in response to Cucumber mosaic virus infection. Sci Rep 9(1):3124

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O et al (2004) Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in arabidopsis. Plant Cell 16(7):1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D et al (2017) Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography–mass spectrometry and olfactometry and electronic nose combined with principal component analysis. Int J Food Sci Technol 52(3):714–723

    Article  CAS  Google Scholar 

  • Madhumita M, Guha P, Nag A (2019) Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: process optimization, GC-MS analysis and anti-microbial activity. Ind Crop Prod 138:111578

    Article  CAS  Google Scholar 

  • Ming R et al (2021) The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol 229(5):2730–2750

    Article  CAS  PubMed  Google Scholar 

  • Mishra A et al (2021) Assessing and integrating the transcriptome analysis with plant development, trichomes, and secondary metabolites yield potential in Mentha arvensis L. Plant Physiol Biochem 162:517–530

    Article  CAS  PubMed  Google Scholar 

  • Pan Q et al (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7(8):e43038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul I, Poddar Sarkar M, Bhadoria PBS (2022) Floral secondary metabolites in context of biotic and abiotic stress factors. Chemoecology 32(2):49–68

    Article  CAS  Google Scholar 

  • Purente N et al (2020) Effect of ethyl methanesulfonate on induced morphological variation in M3 generation of Chrysanthemum indicum var. aromaticum. HortScience 55(7):1099–1104

    Article  CAS  Google Scholar 

  • Qiao Z et al (2021) An update on the function, biosynthesis and regulation of floral volatile terpenoids. Horticulturae 7(11):451

    Article  Google Scholar 

  • Shen Q et al (2016) The jasmonate-responsive AaMYC 2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210(4):1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Simpson K et al (2016) Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Front Plant Sci 7:1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Uji Y et al (2016) Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice. Plant Cell Physiol 57(9):1814–1827

    Article  CAS  PubMed  Google Scholar 

  • Van Moerkercke A et al (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci 112(26):8130–8135

    Article  PubMed  PubMed Central  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61(2):107–114

    Article  Google Scholar 

  • Wu K et al (2021) New insights into gibberellin signaling in regulating plant growth–metabolic coordination. Curr Opin Plant Biol 63:102074

    Article  CAS  PubMed  Google Scholar 

  • Xie L et al (2021) The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. J Exp Bot 72(5):1691–1701

    Article  CAS  PubMed  Google Scholar 

  • Yadav V et al (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell 17(7):1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan T et al (2017) Homeodomain protein 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol 213(3):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Yan J et al (2021) Integrated metabolome and transcriptome analysis reveals candidate genes involved in metabolism of terpenoids and phthalides in celery seeds. Ind Crops Prod 172:114011

    Article  CAS  Google Scholar 

  • Yang N et al (2017) Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8:1804

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H-B et al (2012) Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol Plant 5(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2018) TcMYC2a, a basic helix–loop–helix transcription factor, transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis. Front Plant Sci 9:863

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2020) Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. Nat Plants 6(2):67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H et al (2012) A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. J Biol Chem 287(17):14109–14121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M-L et al (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell Environ 36(1):30–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (32001355), the Shanghai Sailing Program (20YF1447800), the Science and Technology Talent Development Fund for Young Teachers of Shanghai Institute of Technology (ZQ2020-4), and the start-up program of Shanghai Institute of Technology (YJ2021-77).

Author information

Authors and Affiliations

Authors

Contributions

WG carried out part of the experiment, analyzed the data, and prepared the manuscript; QM and Xiang Wang helped carried out part of the experiment; FC reviewed and revised the manuscript; and YZ and MH designed the experiments. All authors read and approved the final manuscript version.

Corresponding authors

Correspondence to Yunwei Zhou or Miao He.

Ethics declarations

Competing Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Stefan de folter .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 355 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Meng, Q., Wang, X. et al. Overexpression of CiMYC2 Transcription Factor from Chrysanthemum indicum var. aromaticum Resulted in Modified Trichome Formation and Terpenoid Biosynthesis in Transgenic Tobacco. J Plant Growth Regul 42, 4161–4175 (2023). https://doi.org/10.1007/s00344-022-10881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10881-1

Keywords

Navigation