Skip to main content

Advertisement

Log in

Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Industrialization and inevitable mining have resulted in the release of some metals in environment, which have different uses on the one hand and also showed environmental toxicity. Lithium (Li) is one of them; however, its excess use in different fields or inappropriate disposal methods resulted in high Li accumulation in soil and groundwater. This subsequently is affecting our environment and more potentially our arable crop production system. In humans, Li has been extensively studied and causes numerous detrimental effects at different organ levels. Moreover, increases in Li in groundwater and food items, cases for mental disorders have been reported in different regions of the world. In plants, only a few studies have been reported about toxic effects of lithium in plants. Moreover, plant products (fruits, grains or other plant parts) could be a major source of Li toxicity in our food chain. Therefore, it is more imperative to understand how plants can be developed more tolerant to Li toxicity. In this short mini-review article, we primarily highlighted and speculated Li uptake, translocation and Li storage mechanism in plants. This article provides considerable information for breeders or environmentalist in identifying and developing Li hyperaccumulators plants and environment management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967

    CAS  PubMed  Google Scholar 

  • Alderman CP, Lindsay KSW (1996) Increased serum lithium concentration secondary to treatment with tiaprofenic acid and fosinopril. Ann Pharmacother 30:1411–1413

    CAS  PubMed  Google Scholar 

  • Ammari TG, Al-Zu’bi Y, Abu-Baker S, Dababneh B, Tahboub A (2011) The occurrence of lithium in the environment of the Jordan Valley and its transfer into the food chain. Environ Geochem Health 33(5):427–437

    CAS  PubMed  Google Scholar 

  • Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a saltsensitive yeast strain. Plant Physiol 126:1061–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson ER (2011) Shocking future battering the lithium Industry through 2020. In TRU group, presentation to 3rd lithium supply and markets conference

  • Anderson MA, Bertsch PM, Miller WP (1988) The distribution of lithium in selected soils and surface waters of the southeastern USA. Appl Geochem 3(2):205–212

    CAS  Google Scholar 

  • Anjum SA, Ashraf U, Khan I, Tanveer M et al (2016a) Chromium and aluminum phytotoxicity in maize: morpho-physiological responses and metal uptake. CLEAN–Soil Air Water 44(8):1075–1084

    CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA (2016b) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23(12):11864–11875

    CAS  Google Scholar 

  • Anjum SA, Ashraf U, Imran K, Tanveer M, Shahid M, Shakoor A, Longchang W (2017a) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27(2):262–273

    Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L (2017b) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228(1):13

    Google Scholar 

  • Antonkiewicz J, Jasiewicz C, Koncewicz-Baran M, Bączek-Kwinta R (2016) Determination of lithium bioretention by maize under hydroponic conditions. Arch Environ Prot 43(4):94–104

    Google Scholar 

  • Antosiewicz DM, Hennig J (2004) Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245

    CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581(12):2247–2254

    CAS  PubMed  Google Scholar 

  • Aral H, Vecchio-Sadus A (2008) Toxicity of lithium to humans and the environment—a literature review. Ecotoxicol Environ Saf 70(3):349–356

    CAS  PubMed  Google Scholar 

  • Ashraf U, Hussain S, Anjum SA, Abbas F, Tanveer M, Noor MA, Tang X (2017) Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471

    CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol 29(9):1017–1024

    CAS  Google Scholar 

  • Bartolo ME, Carter JV (1992) Lithium decreases cold-induced microtubule depolymerization in mesophyll cells of spinach. Plant Physiol 99(4):1716–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315

    CAS  PubMed  Google Scholar 

  • Bihler H, Slayman CL, Bertl A (2002) Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta (BBA)-Biomembr 1558(2):109–118

    CAS  Google Scholar 

  • Birch NJ (2012) Lithium and the cell: pharmacology and biochemistry. Academic Press, London

    Google Scholar 

  • Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3:2534–2542

    CAS  PubMed  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LH, Sturchio NC, Katz A (1997) Lithium isotope study of the yellowstone hydrothermal system. EOS Trans Am Geophys Union 78:F802

    Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    CAS  PubMed  Google Scholar 

  • Dawson EB (1991) The relationship of tap water and physiological levels of lithium to mental hospital admission and homicide in Texas. In: Schrauzer GN, Klippel KF (eds) Lithium in biology and medicine. VCH Verlag, Weinheim, pp 171–187

    Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404

    CAS  PubMed  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53(1):67–107

    CAS  PubMed  Google Scholar 

  • Devi SR, Prasad MNV (1999) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV (ed) Heavy metal stress in plants. Springer, Berlin, pp 99–116

    Google Scholar 

  • Długaszek M, Kłos A, Bertrandt J (2012) Lithium supply in the daily food rations of students. Probl Hig Epidemiol 93(4):867–870

    Google Scholar 

  • Dolara P (2014) Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int J Food Sci Nutr 65(8):911–924

    CAS  PubMed  Google Scholar 

  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 859–875

    Google Scholar 

  • Efrati S, Averbukh M, Berman S, Feldman L, Dishy V, Kachko L, Weissgarten J, Golik A, Averbukh Z (2004) N-Acetylcysteine ameliorates lithium-induced renal failure in rats. Nephrol Dialysis Transplant 20(1):65–70

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein MR, Mascitelli L (2016) Is violence in part a lithium deficiency state? Med Hypotheses 89:40–42

    CAS  PubMed  Google Scholar 

  • Grandjean EM, Aubry JM (2009) Lithium: updated human knowledge using an evidence-based approach. CNS Drugs 23(5):397–418

    CAS  PubMed  Google Scholar 

  • Gries GE, Wagner GJ (1998) Association of nickel versus transport of cadmium and calcium in tonoplast vesicles of oat roots. Planta 204(3):390–396

    CAS  PubMed  Google Scholar 

  • Habashi F (1997) Handbook of extractive metallurgy. Wiley-VCH, New York

    Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hörtensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 7–73

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2019) Plants under metal and metalloid stress: responses, tolerance and remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6

    Book  Google Scholar 

  • Hawrylak-Nowak B, Kalinowska M, Szymańska M (2012) A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Elem Res 149(3):425–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • He B, Yang XE, Wei YZ, Ye ZQ, Ni WZ (2002) A new lead resistant and accumulating ecotype—Sedum alfredii H. Acta Bot Sin 44(11):1365–1370

    CAS  Google Scholar 

  • Hossain AZ, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163(1):39–47

    CAS  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    CAS  PubMed  Google Scholar 

  • Jathar VS, Pendharkar PR, Pandey VK, Raut SJ, Doongaji DR, Bharucha MP, Satoskar RS (1980) Manic depressive psychosis in India and the possible role of lithium as a natural prophylactic. II—Lithium content of diet and some biological fluids in Indian subjects. J Postgrad Med 26:39–44 5

    CAS  PubMed  Google Scholar 

  • Jiang L, Wang L, Mu SY, Tian CY (2014) Apocynum venetum: a newly found lithium accumulator. Flora-Morphol Distrib Funct Ecol Plants 209(5–6):285–289

    Google Scholar 

  • Jiang L, Wang L, Tian CY (2018) High lithium tolerance of Apocynum venetum seeds during germination. Environ Sci Pollut Res 25(5):5040–5046

    CAS  Google Scholar 

  • Jou Y, Wang YL, Yen HCE (2007) Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol 34:353–359

    CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, pp. 87–93

    Google Scholar 

  • Kalinowska M, Hawrylak-Nowak B, Szymańska M (2013) The influence of two lithium forms on the growth, L-ascorbic acid content and lithium accumulation in lettuce plants. Biol Trace Elem Res 152(2):251–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Fujii K, Shiori T, Inubushi T, Takhashi S (1996) Lithium side effects in relation to brain lithium concentration measured by lithium-7 magnetic resonance spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry 20:87–97

    CAS  Google Scholar 

  • Kent NL (1941) Absorption, translocation and ultimate fate of lithium in the wheat plant. New Phytol 40(4):291–298

    CAS  Google Scholar 

  • Kiełczykowska M, Pasternak K, Musik I, Wrońiska J (2004) The effect of lithium administration in a diet on the chosen parameters of the antioxidant barrier in rats. Annales Universitatis Mariae Curie-Sklodowska D 59(2):140–145)

    Google Scholar 

  • Kjølholt J, Stuer-Lauridsen F, Skibsted Mogensen A, Havelund S (2003) The elements in the second rank—lithium. Miljoministeriet, Copenhagen, Denmark. https://www.miljoeogressourcer.dk/filer/lix/2457/87-7972-492-2__Milj__projekt_nr._770__2003_.pdf. Accessed 10 Dec 2018

  • Kousa A, Mattila S, Nikkarinen M (2013) High tech-metals in the environment and health. Lithium and cobalt. Geologian Tutkimuskeskus 53:2–14

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspispecies. Plant Physiol 122(4):1343–1354

    PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Mobilization and sequestration of heavy metals by plants. In: Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts, Springer, Singapore, p. 367

    Google Scholar 

  • Lambert J (1983) Lithium content in the grassland vegetation. In Anke M, Baumann W, Bra¨unlich H, Bru¨ckner C (eds) Proceedings 4. Spurenelement Symposium 1983. Jena: VEB Kongressdruck, pp 32–38

  • Lenntech (2007) Lithium and water: reaction mechanisms, environmental impact and health effects. http://www.lenntech.com/elements-and-water/lithium-andwater.htmS. Accessed 10 Dec 2018

  • Léonard A, Hantson P, Gerber GB (1995) Mutagenicity, carcinogenicity and teratogenicity of lithium compounds. Mutat Res/Rev Genet Toxicol 339(3):131–137

    Google Scholar 

  • Li X, Gao P, Gjetvaj B, Westcott N, Gruber MY (2009) Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci 177(1):68–80

    CAS  Google Scholar 

  • Liaugaudaite V, Mickuviene N, Raskauskiene N, Naginiene R, Sher L (2017) Lithium levels in the public drinking water supply and risk of suicide: a pilot study. J Trace Elem Med Biol 43:197–201

    CAS  PubMed  Google Scholar 

  • Lin C-C, Chen L-M, Liu Z-H (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    CAS  Google Scholar 

  • Liptáková Ľ, Huttová J, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J Plant Physiol 170(7):646–652

    PubMed  Google Scholar 

  • Makus DJ, Zibilske L, Lester G (2006) Effect of light intensity, soil type, and lithium addition on spinach and mustard greens leaf constituents. Subtrop Plant Sci 58:35–41

    Google Scholar 

  • Mason B (1974) Principles of geochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Merian EE (1991) Metals and their compounds in the environment: occurrence, analysis and biological relevance. VCH Publishers, Inc., Weinheim

    Google Scholar 

  • Moore S (2007) Between rock and salt lake. Indian minerology, June, pp 58–69

  • Mulkey TJ (2005) Alteration of growth and gravitropic response of maize roots by lithium. Gravit Space Res 18(2):119–120

    Google Scholar 

  • Naranjo MA, Romero C, Bellés JM, Montesinos C, Vicente O, Serrano R (2003) Lithium treatment induces a hypersensitive-like response in tobacco. Planta 217(3):417–424

    CAS  PubMed  Google Scholar 

  • Nciri R, Allagui MS, Bourogaa E, Saoudi M, Murat JC, Croute F, Elfeki A (2012) Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J Physiol Biochem 68(1):11–18

    CAS  PubMed  Google Scholar 

  • Oktem F, Ozguner F, Sulak O, Olgar S, Akturk O, Yilmaz HR, Altuntas I (2005) Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol Cell Biochem 277:109–115

    CAS  PubMed  Google Scholar 

  • Pompili M, Vichi M, Dinelli E, Pycha R, Valera P, Albanese S, Lima A, De Vivo B, Cicchella D, Fiorillo A, Amore M (2015) Relationships of local lithium concentrations in drinking water to regional suicide rates in Italy. World J Biol Psychiatry 16(8):567–574

    PubMed  Google Scholar 

  • Qiao L, Tanveer M, Wang L, Tian C (2018) Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant Physiol Biochem 132:341–344

    CAS  PubMed  Google Scholar 

  • Sapse AM, Schleyer PR (1995) Lithium chemistry: a theoretical and experimental overview. Wiley, New York

    Google Scholar 

  • Schrauzer GN (2002) Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21(1):14–21

    CAS  PubMed  Google Scholar 

  • Scott AD, Smith SJ (1987) Sources, amounts, and forms of alkali elements in soils. Adv Soil Sci 6:101–147

    CAS  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    CAS  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92(5):627–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    CAS  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    CAS  Google Scholar 

  • Shah AN, Tanveer M, Hussain S, Yang G (2016) Beryllium in the environment: whether fatal for plant growth? Rev Environ Sci Biotechnol 15(4):549–561

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: reasons, mechanisms and remediation possibilities—a review. Plant Physiol Biochem 107:104–115

    CAS  PubMed  Google Scholar 

  • Shahzad B, Mughal MN, Tanveer M, Gupta D, Abbas G (2017) Is lithium biologically an important or toxic element to living organisms? An overview. Environ Sci Pollut Res 24(1):103–115

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment—a review. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.10.014

    Article  PubMed  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56(2):114–121

    CAS  PubMed  Google Scholar 

  • Shkolnik MYA (1984) Trace elements in plants. Elsevier, Amsterdam, p 463

    Google Scholar 

  • Tandon A, Dhawan DK, Nagpaul JP (1998). Effect of lithium on hepatic lipid peroxidation and antioxidative enzymes under different dietary protein regimens. J Appl Toxicol 18(3):187–190).

    CAS  PubMed  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Google Scholar 

  • Tanveer M. Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    CAS  Google Scholar 

  • Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, Harlow, pp 498–537

    Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674

    CAS  PubMed  Google Scholar 

  • Ting-Qiang LI, Yang XE, Jin-Yan YA, Zhen-Li HE (2006) Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere 16(5):616–623

    Google Scholar 

  • Tölgyesi G (1983) Distribution of lithium in Hungarian soils and plants. In: Anke M et al (eds) Lithium 4. Spurenelementsymposium. Friedrich Schiller Universität, Jena, pp 39–44

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci 108(52), 20959–20964

    CAS  PubMed  Google Scholar 

  • U.S. Geological Survey (2012) https://pubs.usgs.gov/of/2012/1072/ or http://www.goldendragoncapital.com/lithium-reserves-country/

  • Vine JD, Dooley JR Jr. (1980) Where on Earth is all the lithium?; with a section on uranium isotope studies (No. 80-1234). US Geological Survey

  • Vlasyuk PA, Kuz’menko LM (1975) Metabolic activity of potato plant ribosomes in dependence on their supply with lithium. Fiziol Biokhim Kun Rast 7:563–568

    CAS  Google Scholar 

  • Vlasyuk PA, Kuz’menko LM, Okhrimenko ME (1975a) Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol. Geofi,z. Khim. Bioi. pp. 742–748

  • Vlasyuk PA, Okhrimenko ME, Kuz’menko LM (1975b) Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim Kun Rast 7:115–120

    CAS  Google Scholar 

  • Wallace A (1979) Excess trace metal effects on calcium distribution in plants. Commun Soil Sci Plant Anal 10(1–2):473–479

    CAS  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136(3):3762–3770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shen H, Xie Y, Gong Y, Xu L, Liu L (2015) Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.). Front Plant Sci 6:1–13

    Google Scholar 

  • Waters S, Gilliham M, Hrmova M (2013) Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 14(4):7660–7680

    PubMed  PubMed Central  Google Scholar 

  • Weeks ME (1956) Discovery of the elements, 6th edn. Journal of Chemical Education, Easton, pp. 578

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30(5):685–700

    CAS  PubMed  Google Scholar 

  • Weng B, Xie X, Weiss DJ, Liu J, Lu H, Yan C (2012) Kandelia obovata (S. L.) yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull 64:2453 – 2460

    CAS  PubMed  Google Scholar 

  • Yalamanchali R (2012) Lithium, an emerging environmental contaminant, is mobile in the soil-plant system. Doctoral dissertation, Lincoln University

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to Al adsorption and root growth in Arabidopsis. Plant Physiol. https://doi.org/10.1104/pp.111.172221

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller S, Feller U (2000) Long-distance transport of alkali metals in maturing wheat. Biol Plant 43(4):523–528

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Laboratory of Desert and Oasis Ecology (Y971031) and grant was given to Lei Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Tanveer.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanveer, M., Hasanuzzaman, M. & Wang, L. Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants. J Plant Growth Regul 38, 1574–1586 (2019). https://doi.org/10.1007/s00344-019-09957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09957-2

Keywords

Navigation