Skip to main content
Log in

Molecular Characterization and Expression of Ethylene Biosynthetic Genes During Cut Flower Development in Tree Peony (Paeonia suffruticosa) in Response to Ethylene and Functional Analysis of PsACS1 in Arabidopsis thaliana

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Our previous studies have suggested that ethylene is likely to be involved in the regulation of opening and senescence of cut flowers of tree peony. In the present work, to understand the molecular regulation of ethylene biosynthesis in cut tree peony flower development, we isolated two full-length cDNAs encoding ethylene synthetic enzymes, termed PsACS1 and PsACO1, from tree peony flower petals and investigated the effects of exogenous ethylene and 1-methylcyclopropene (1-MCP) on their expressions during vase life. Northern blot analysis revealed that in untreated flowers slight expression of PsACS1 was initiated until flowers half opened and reached the maximum when flowers fully opened, whereas PsACO1 exhibited constitutive levels during flower opening. PsACS1 expression was substantially induced by ethylene and inhibited by 1-MCP during flower development, and no significant alteration was found in the accumulation of PsACO1 transcript in the petals of differently treated flowers. These results suggest that the PsACS1 gene and its resultant protein may be involved in flower opening and senescence, whereas PsACO1 seems constitutively expressed in tree peony. Via Agrobacterium-mediated transformation, PsACS1 was successfully inserted into Arabidopsis and T3 transgenic lines were used for functional analysis of PsACS1. Compared with the wild-type control, PsACS1-overexpressing plants showed a discrepant phenotype, including shorter hypocotyls, fewer leaves, smaller rosette diameter, and later flowering, which were all attributed to the higher ethylene production caused by the ectopic expression of PsACS1 in Arabidopsis. This result provides support of the hypothesis that PsACS1 is an important gene involved in ethylene biosynthesis during cut flower opening and senescence of tree peony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van der Straeten D, Genschik P, Moretz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 104:6484–6489

    Article  PubMed  CAS  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    Article  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of 1-aminocyclopropane-1-carboxylic acid oxidase genes family of tomato. Plant J 9:525–535

    Article  PubMed  CAS  Google Scholar 

  • Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25

    Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Clark DG, Richards C, Hlioti Z, Lind-Iversen S, Brown K (1997) Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey). Plant Mol Biol 34:855–865

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dal Cin V, Danesin M, Boschetti A, Dorigoni A, Ramina A (2005) Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck). J Exp Bot 56:2995–3005

    Article  CAS  Google Scholar 

  • Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Otero C, Matilla AJ, Rasori A, Ramina A, Bonghi C (2006) Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. subsp. Syriaca). Plant Sci 171:74–83

    Article  Google Scholar 

  • Guo WW, Dong L, Wang LY, Chen RX, Liu AQ (2004) The postharvest characteristics and water balance of some cultivars of tree-peony cut flowers. Sci Silvae Sin 40:89–93

    Google Scholar 

  • Harada T, Murakoshi Y, Torii Y, Tanase K, Onozaki T, Morita S, Masumura T, Satoh S (2011) Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus. Plant Cell Rep 30:519–527

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Jia PY, Zhou L, Guo WW, Wang LY, Dong L (2008) Postharvest behavior and endogenous ethylene pattern of Paeonia suffruticosa cut flowers. Acta Hort 768:445–450

    CAS  Google Scholar 

  • Jones ML (2003) Ethylene biosynthetic genes are differentially regulated by ethylene and ACC in carnation styles. Plant Growth Regul 40:129–138

    Article  CAS  Google Scholar 

  • Jones ML, Woodson WR (1999) Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiol 119:755–764

    Article  PubMed  CAS  Google Scholar 

  • Joo S, Liu Y, Lueth A, Zhang S (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54:129–140

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1993) Enzymes of ethylene biosynthesis. Plant Physiol 91:1–4

    Article  Google Scholar 

  • Knoester M, Linthorst HJM, Bol JF, van Loon LC (1997) Modulation of stress-inducible ethylene biosynthesis by sense and antisense gene expression in tobacco. Plant Sci 126:173–183

    Article  CAS  Google Scholar 

  • Lasserre E, Bouquin T, Hernandez JA, Pech JC, Balague C, Bull J (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336

    Article  PubMed  CAS  Google Scholar 

  • Liu YD, Zhang SQ (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed  CAS  Google Scholar 

  • Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR, Drincovich MF (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks which underpin each developmental stage. Plant Physiol 157:1696–1710

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci China Ser C 48:434–444

    Article  CAS  Google Scholar 

  • Ma N, Tan H, Liu XH, Xue JQ, Li YH, Gao JP (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv Samantha. J Exp Bot 57:2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2007) Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul 53:87–96

    Article  CAS  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou E, Little HA, Hammar SA, Grumet R (2005) Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Reprod 18:131–142

    Article  CAS  Google Scholar 

  • Pech JC, Latché A, Bouzayen M (2010) Ethylene biosynthesis. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Springer, New York, pp 115–136

    Google Scholar 

  • Reid MS, Wu MJ (1992) Ethylene and flower senescence. Plant Growth Regul 11:37–43

    Article  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Rasori A, Ramina A, Tonutti P (2001) Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plantarum 111:336–344

    Article  CAS  Google Scholar 

  • Schotsmans WC, Prange RK, Binder BM (2009) 1-Methylcyclopropene: mode of action and relevance in postharvest horticulture research. Hortic Rev 35:263–313

    Article  Google Scholar 

  • Sebastià CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81–91

    Article  Google Scholar 

  • Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S (2006) Controlling ethylene responses in flowers at the receptor level. Biotech Adv 24:368–381

    Article  CAS  Google Scholar 

  • Sozzi GO, Beaudry RM (2007) Current perspectives on the use of 1-methylcyclopropene in tree fruit crops: an international survey. Stewart Postharvest Rev 3:1–16

    Article  Google Scholar 

  • Tang X, Gomes AMTR, Bhatia A, Woodson WR (1994) Pistil-specific and ethylene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in petunia flowers. Plant Cell 6:1127–1139

    Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812

    Article  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  Google Scholar 

  • Vandenbussche F, Verbelen JP, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284

    Article  PubMed  CAS  Google Scholar 

  • Vriezen WH, Hulzink R, Mariani C, Voesenek LACJ (1999) 1-Aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol 121:189–196

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff C, Chanasut U, Harren FJM, Laarhoven LJ, Thomas B, Rogers HJ, Stead AD (2005) Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission, and ethylene biosynthesis. J Exp Bot 56:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Fan J, Ranu RS (2004) Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa × hybrida). Plant Cell Rep 22:422–429

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Han KT, Dai SL (2009) Construction of expression vector and transformation of chrysanthemum with maize Lc gene. Genomics Appl Biol 28:229–236

    CAS  Google Scholar 

  • Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409

    Article  PubMed  CAS  Google Scholar 

  • Weterings K, Pezzotti M, Cornelissen M, Mariani C (2002) Dynamic 1-aminocyclopropane-1-carboxylate-synthase and -oxidase transcript accumulation patterns during pollen tube growth in tobacco styles. Plant Physiol 130:1190–1200

    Article  PubMed  CAS  Google Scholar 

  • Wong WS, Ning W, Xu PL, Kung SD, Yang SF, Li N (1999) Identification of two chilling-regulated 1-aminocyclopropane-1-carboxylate synthase genes from citrus (Citrus sinensis Osbeck) fruit. Plant Mol Biol 41:587–600

    Article  PubMed  CAS  Google Scholar 

  • Xue JQ, Li YH, Tan H, Yang F, Ma N, Gao JP (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot 59:2161–2169

    Article  PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yoo A, Seo YS, Jung JW, Sung SK, Kim WT, Lee W, Yang DR (2006) Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity. J Struct Biol 156:407–420

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 5:14

    Article  PubMed  Google Scholar 

  • Zhang Z, Ren JS, Clifton IJ, Schofield CJ (2004) Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase—the ethylene-forming enzyme. Chem Biol 11:1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Jia PY, Liu J, Wang WR, Huo ZP, Dong L (2009) Effect of ethylene on cut flowers of tree peony ‘Luoyang Hong’ opening and senescence process and endogenous ethylene biosynthesis. Acta Hortic Sin 36:239–244

    CAS  Google Scholar 

  • Zhou L, Dong L, Jia PY, Wang WR, Wang LY (2010) Expression of ethylene receptor and transcription factor genes, and ethylene response during flower opening in tree peony (Paeonia suffruticosa). Plant Growth Regul 62:171–179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30972030) and the Program for New Century Excellent Talent at the University of China (NCET-05-0138). We gratefully acknowledge Prof. Silan Dai and Dr. Yi Wang, Beijing Forestry University, China, for invaluable assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dong.

Additional information

Lin Zhou and Chao Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Zhang, C., Fu, J. et al. Molecular Characterization and Expression of Ethylene Biosynthetic Genes During Cut Flower Development in Tree Peony (Paeonia suffruticosa) in Response to Ethylene and Functional Analysis of PsACS1 in Arabidopsis thaliana . J Plant Growth Regul 32, 362–375 (2013). https://doi.org/10.1007/s00344-012-9306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9306-4

Keywords

Navigation