Skip to main content
Log in

An assessment of the CMIP5 models in simulating the Argo geostrophic meridional transport in the North Pacific Ocean

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Eleven climate system models that participate in the Coupled Model Intercomparison Project phase 5 (CMIP5) were evaluated based on an assessment of their simulated meridional transports in comparison with the Sverdrup transports. The analyses show that the simulated North Pacific Ocean circulation is essentially in Sverdrup balance in most of the 11 models while the Argo geostrophic meridional transports indicate significant non-Sverdrup gyre circulation in the tropical North Pacific Ocean. The climate models overestimated the observed tropical and subtropical volume transports significantly. The non-Sverdrup gyre circulation leads to non-Sverdrup heat and salt transports, the absence of which in the CMIP5 simulations suggests deficiencies of the CMIP5 model dynamics in simulating the realistic meridional volume, heat, and salt transports of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All CMIP5 model simulation data are distributed by the Earth System Grid Federation (ESGF) at the website https://esgf-node.llnl.gov/search/cmip5/. The data are open to public without registration.

References

  • Arakawa A, Lamb V R. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, 17: 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    Google Scholar 

  • Bretherton C S, Widmann M, Dymnikov V P, Wallace J M, Bladé I. 1999. The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 (7): 1990–2009.

    Article  Google Scholar 

  • Chu P C. 1995. P-vector method for determining absolute velocity from hydrographic data. Mar. Technol. Soc. J., 29(2): 3-14.

  • Chu P C. 2006. P-Vector Inverse Method. Springer, Berlin. 605p. Gray A R, Riser S C. 2014. A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44(4): 1213-1229.

  • Hautala S L, Roemmich D H, Schmilz Jr W J. 1994. Is the North Pacific in Sverdrup balance along 24°N?. J. Geophys. Res., 99(C8): 16041-16052.

  • Hughes C W, De Cuevas B A. 2001. Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31(10): 2871–2885.

    Article  Google Scholar 

  • Kutsuwada K, Kakiuchi A, Sasai Y, Sasaki H, Uehara K, Tajima R. 2019. Wind-driven North Pacific Tropical Gyre using high-resolution simulation outputs. J. Oceanogr., 75: 81–93.

    Article  Google Scholar 

  • Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11(3): 324–336.

    Article  Google Scholar 

  • Leetmaa A, Niiler P, Stommel H. 1977. Does the Sverdrup relation account for the mid-Atlantic circulation?. J. Mar. Res., 35: 1–10.

    Google Scholar 

  • Lu Y Y, Stammer D. 2004. Vorticity balance in coarseresolution global ocean simulations. J. Phys. Oceanogr., 34(3): 605–622.

    Article  Google Scholar 

  • Meyers G. 1980. Do Sverdrup transports account for the Pacific North Equatorial Countercurrent?. J. Geophys. Res., 85(C2): 1073–1075.

    Article  Google Scholar 

  • Roemmich D, Gilson J. 2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82(2): 81–100.

    Article  Google Scholar 

  • Schmitz Jr W J, Thompson J D, Luyten J R. 1992. The Sverdrup circulation for the Atlantic along 24°N. J. Geophys. Res., 97(C5): 7251–7256.

    Article  Google Scholar 

  • Stocker T F, Qin D, Plattner G K. 2014. Technical summary. In: Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p.33–115, https://doi.org/10.1017/CBO9781107415324.005.

    Google Scholar 

  • Stommel H, Schott F. 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Res., 24(3): 325–329.

    Article  Google Scholar 

  • Sverdrup H U. 1947. Wind-driven currents in a Baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33(11): 318–326.

    Article  Google Scholar 

  • Wunsch C, Roemmich D. 1985. Is the north Atlantic in Sverdrup balance?. J. Phys. Oceanogr., 15(12): 1876–1880.

    Article  Google Scholar 

  • Wunsch C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys., 16(4): 583–620.

    Article  Google Scholar 

  • Wunsch C. 2011. The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69(2-3): 417–434.

    Article  Google Scholar 

  • Yang L N, Yuan D L. 2016. Absolute geostrophic currents in global tropical oceans. Chin. J. Oceanol. Limnol., 34(6): 1383–1393.

    Article  Google Scholar 

  • Yuan D L, Zhang Z C, Chu P C, Dewar W K. 2014. Geostrophic circulation in the tropical north pacific ocean based on Argo profiles. J. Phys. Oceanogr., 44(2): 558–575.

    Article  Google Scholar 

  • Zhang Z C, Yuan D L, Chu P C. 2013. Geostrophic meridional transport in tropical northwest Pacific based on Argo profiles. Chin. J. Oceanol. Limnol., 31(3): 656–664.

    Article  Google Scholar 

  • Zhou H, Liu X Q, Xu P. 2019. Sensitivity of Sverdrup transport to surface wind products over the tropical North Pacific Ocean. Ocean Dyn., 69(5): 529–542.

    Article  Google Scholar 

  • Zhou H, Yuan D L, Yang L N, Li X, Dewar W. 2018. Decadal variability of the meridional geostrophic transport in the upper tropical North Pacific Ocean. J. Climate, 31(15): 5891–5910.

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Yuan.

Additional information

Supported by the National Natural Foundation of China (Nos. 41421005, 41720104008, 91858204), the National Basic Research Program of China (973 Program) (No. 2012CB956001), the Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ04), the Chinese Academy of Science (No. XDA11010205), and the Shandong Provincial Projects (Nos. 2014GJJS0101, U1406401)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yuan, D. An assessment of the CMIP5 models in simulating the Argo geostrophic meridional transport in the North Pacific Ocean. J. Ocean. Limnol. 38, 1445–1463 (2020). https://doi.org/10.1007/s00343-020-0002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0002-0

Keywords

Navigation