Skip to main content
Log in

Plate subduction, oxygen fugacity, and mineralization

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Plate subduction is the largest natural factory that processes elements, which controls recycling and mineralization of a variety of elements. There are three major ore deposit belts in the world: the circum-Pacific, the central Asian, and the Tethys belts. All the three belts are closely associated with plate subductions, the mechanism remains obscure. We approached this problem from systematic studies on the behaviours of elements during geologic processes. This contribution summaries the recent progress of our research group. Our results suggest that porphyry Cu deposits form through partial melting of subducted young oceanic crust under oxygen fugacities higher than ΔFMQ ∼+1.5, which is promoted after the elevation of atmospheric oxygen at ca. 550 Ma. Tin deposits are associated with reducing magmatic rocks formed as a consequence of slab rollback. The Neo-Tethys tectonic regime hosts more than 60% of the world’s total Sn reserves. This is due to the reducing environment formed during the subduction of organic rich sediments. For the same reason, porphyry Cu deposits formed in the late stages during the closure of the Neo-Tethys Ocean. Tungsten deposits are also controlled by slab rollback, but is not so sensitive to oxygen fugacity. Subduction related W/Sn deposits are mostly accompanied by abundant accessory fluorites due to the breakdown of phengite and apatite. Decomposition of phengite is also significant for hard rock lithium deposits, whereas orogenic belt resulted from plate subduction promote the formation of Li brine deposits. Cretaceous red bed basins near the Nanling region are favorable for Li brines. Both Mo and Re are enriched in the oxidation-reduction cycle during surface processes, and may get further enriched once Mo-, Re-enriched sediments are subducted and involved in magmatism. During plate subduction, Mo and Re fractionate from each other. Molybdenum is mainly hosted in porphyry Mo deposits and to a less extent, porphyry Cu-Mo deposits, whereas Re is predominantly hosted in porphyry Cu-Mo deposits and sedimentary sulfide deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile, Contributions to Mineralogy and Petrology, 144(3): 347–364.

    Google Scholar 

  • Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle, Contributions to Mineralogy and Petrology, 114(3): 331–348.

    Google Scholar 

  • Brandon A D, Draper D S. 1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA, Geochimica et Cosmochimica Acta, 60(10): 1 739–1 749.

    Google Scholar 

  • Carlile J C, Mitchell A H G. 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia, Journal of Geochemical Exploration, 50(1–3): 91–142.

    Google Scholar 

  • Chen Y J. 2013. The development of continental collision metallogeny and its application, Acta Petrologica Sinica, 29(1): 1–17. (in Chinese with English abstract)

    Google Scholar 

  • Chen Y X, Li H, Sun W D, Ireland T, Tian X F, Hu Y B, Yang W B, Chen C, Xu D R. 2016. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: implications for Shizhuyuan W-Sn mineralization and tectonic evolution, Lithos, 266–267: 435–452.

    Google Scholar 

  • Cheng Y B, Mao J W, Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam, Solid Earth Sciences, 1(3): 79–88.

    Google Scholar 

  • Chiaradia M, Fontboté L, Beate B. 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador, Mineralium Deposita, 39(2): 204–222.

    Google Scholar 

  • Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geoscience, 7(1): 43–46.

    Google Scholar 

  • Cooke D R, Hollings P, Walsh J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls, Economic Geology, 100(5): 801–818.

    Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347(6294): 662–665.

    Google Scholar 

  • Esser B K, Turekian K K. 1993. The osmium isotopic composition of the continental crust, Geochimica et Cosmochimica Acta, 57(13): 3 093–3 104.

    Google Scholar 

  • Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle, Geology, 40(9): 783–786.

    Google Scholar 

  • Feng J R, Mao J W, Pei R F, Zhou Z H, Yang Z X. 2010. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis, Acta Petrologica Sinica, 26(3): 845–857. (in Chinese with English abstract)

    Google Scholar 

  • Guo J, Zhang R Q, Li C Y, Sun W D, Hu Y B, Kang D M, Wu J D. 2018a. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting, Ore Geology Reviews, 92: 627–642.

    Google Scholar 

  • Guo J, Zhang R Q, Sun W D, Ling M X, Hu Y B, Wu K, Luo M, Zhang L C. 2018b. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: insights from cassiterite U-Pb ages and trace element compositions, Ore Geology Reviews, 95: 863–879.

    Google Scholar 

  • Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, Journal of Geophysic Research: Solid Earth, 108(B1): 2 029, https://doi.org/10.1029/2001JB001127.

    Google Scholar 

  • Hacker B R, Abers G A. 2012. Subduction Factory 5: unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite, Journal of Geophysic Research: Solid Earth, 117(B6): B06308, https://doi.org/10.1029/2012JB009187.

    Google Scholar 

  • Hou Z Q, Yang Z M, Lu Y J, Kemp A, Zheng Y C, Li Q Y, Tang J X, Yang Z S, Duan L F. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones, Geology, 43(3): 247–250.

    Google Scholar 

  • Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen, Ore Geology Reviews, 36(1–3): 25–51.

    Google Scholar 

  • Hou Z Q, Zhang H R. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain, Ore Geology Reviews, 70: 346–384.

    Google Scholar 

  • Hu X Y, Bi X W, Hu R Z, Cai G S, Chen Y W. 2016. Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province, China, Acta Geochimica, 35(2): 138–147.

    Google Scholar 

  • Hua R M, Chen P R, Zhang W L, Yao J M, Lin J F, Zhang Z S, Gu S Y, Liu X D, Qi H W. 2005. Metallogenesis related to mesozoic granitoids in the Nanling Range, South China and their geodynamic settings, Acta Geologica Sinica, 79(6): 810–820.

    Google Scholar 

  • Ishihara S, Hashimoto M, Machida M. 2000. Magnetite/ilmenite-series classification and magnetic susceptibility of the Mesozoic-Cenozoic Batholiths in Peru, Resource Geology, 50(2): 123–129.

    Google Scholar 

  • Ishihara S, Murakami H. 2006. Fractionated ilmenite-series granites in Southwest Japan: source magma for REE-Sn-W mineralizations, Resource Geology, 56(3): 245–256.

    Google Scholar 

  • Ishihara S. 1998. Granitoid series and mineralization in the Circum-Pacific Phanerozoic granitic belts, Resource Geology, 48(4): 219–224.

    Google Scholar 

  • Jenkyns H C. 2010. Geochemistry of oceanic anoxic events, Geochemistry, Geophysics, Geosystems, 11(3): Q03004, https://doi.org/10.1029/2009GC002788.

    Google Scholar 

  • Jiang S Y, Ling H F, Zhao K D, Zhu M Y, Yang J H, Chen Y Q. 2008. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China, Acta Petrologica et Mineralogica, 27(4): 341–345. (in Chinese with English abstract)

    Google Scholar 

  • Jiang S Y, Peng N J, Huang L C, Xu Y M, Zhan G L, Dan X H. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province, Acta Petrologica Sinica, 31(3): 639–655. (in Chinese with English abstract)

    Google Scholar 

  • Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity, Geochimica et Cosmochimica Acta, 74(20): 5 926–5 938.

    Google Scholar 

  • Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas, Geology, 37(5): 415–418.

    Google Scholar 

  • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas, Science, 325(5940): 605–607.

    Google Scholar 

  • Kesler S E. 1997. Metallogenic evolution of convergent margins: selected ore deposit models, Ore Geology Reviews, 12(3): 153–171.

    Google Scholar 

  • Korzhinsky M, Tkachenko S, Shmulovich K, Taran Y A, Steinberg G. 1994. Discovery of a pure rhenium mineral at Kudriavy volcano, Nature, 369(6475): 51–52.

    Google Scholar 

  • Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336(6077): 64–68.

    Google Scholar 

  • Lehmann B, Harmanto. 1990. Large-scale tin depletion in the Tanjungpandan Tin Granite, Belitung Island, Indonesia, Economic Geology, 85(1): 99–111.

    Google Scholar 

  • Lehmann B, Ishihara S, Michel H, Miller J, Rapela C W, Sanchez A, Tistl M, Winkelmann L. 1990. The Bolivian Tin Province and Regional Tin Distribution in the Central Andes; a Reassessment, Economic Geology, 85(5): 1 044–1 058.

    Google Scholar 

  • Lehmann B. 1987. Tin granites, geochemical heritage, magmatic differentiation, Geologische Rundschau, 76(1): 177–185.

    Google Scholar 

  • Lehmann B. 2011. Regional metal zonation in the Central Andes: tin versus copper. p.17–19.

  • Li C Y, Wang F Y, Hao X L, Ding X, Zhang H, Ling M X, Zhou J B, Li Y L, Fan W M, Sun W D. 2012a. Formation of the world’s largest molybdenum metallogenic belt: a plate-tectonic perspective on the Qinling molybdenum deposits, International Geology Review, 54(9): 1 093–1 112.

    Google Scholar 

  • Li C Y, Zhang H, Wang F Y, Liu J Q, Sun Y L, Hao X L, Li Y L, Sun W D. 2012b. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback, Lithos, 150: 101–110.

    Google Scholar 

  • Li C Y, Zhang R Q, Ding X, Ling M X, Fan W M, Sun W D. 2016. Dating cassiterite using laser ablation ICP-MS, Ore Geology Reviews, 72: 313–322.

    Google Scholar 

  • Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China, National Science Reviews, 4(1): 111–120.

    Google Scholar 

  • Li X M, Zou H P. 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution, Solid Earth Sciences, 2(3): 79–88.

    Google Scholar 

  • Liang H Y, Sun W D, Su W C, Zartman R E. 2009b. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration, Economic Geology, 104(4): 587–596.

    Google Scholar 

  • Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009a. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project, Chemical Geology, 268(1–2): 27–40.

    Google Scholar 

  • Liao M Y, Tao Y, Song X Y, Li Y B, Xiong F. 2016. Study of oxygen fugacity during magma evolution and ore genesis in the Hongge mafic-ultramafic intrusion, the Panxi region, SW China, Acta Geochimica, 35(1): 25–42.

    Google Scholar 

  • Lightfoot P C, Evans-Lamswood D. 2015. Structural controls on the primary distribution of mafic-ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces, Ore Geology Reviews, 64: 354–386.

    Google Scholar 

  • Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X Y, Ding X, Wei G J, Xie L H, Deng W F, Sun W D. 2013. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids, Scientific Reports, 3: 1776.

    Google Scholar 

  • Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous Ridge Subduction Along the Lower Yangtse River Belt, Eastern China, Economic Geology, 104(2): 303–321.

    Google Scholar 

  • Ludington S, Plumlee G S. 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey Open-File Report 2009–1215, U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia. 16p.

    Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506(7488): 307–315.

    Google Scholar 

  • Mao J W, Chen Y B, Chen M H, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings, Mineralium Deposita, 48(3): 267–294.

    Google Scholar 

  • Mao J W, Pirajno F, Cook N. 2011a. Mesozoic metallogeny in East China and corresponding geodynamic settings — An introduction to the special issue, Ore Geology Reviews, 43(1): 1–7.

    Google Scholar 

  • Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F, Guo B J. 2011b. Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt: characteristics and tectonic settings, Ore Geology Reviews, 43(1): 264–293.

    Google Scholar 

  • McDonough W F, Sun S S. 1995. The composition of the earth, Chemical Geology, 120(3–4): 223–253.

    Google Scholar 

  • Mlynarczyk M S J, Williams-Jones A E. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt, Earth and Planetary Science Letters, 240(3–4): 656–667.

    Google Scholar 

  • Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 30(10): 915–918.

    Google Scholar 

  • Munk L A, Hynek S A, Bradley D C, Boutt D F, Labay K, Jochens H. 2016. Lithium brines: a global perspective. In: Verplanck P L, Hitzman M W eds. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton. p.339–365.

    Google Scholar 

  • Oyarzun R, Márquez A, Lillo J, López I, Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism, Mineralium Deposita, 36(8): 794–798.

    Google Scholar 

  • Peucker-Ehrenbrink B, Jahn B M. 2001. Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust. Geochemistry, Geophysics, Geosystems, 2(10): 2001GC000172.

    Google Scholar 

  • Pollard P J, Taylor R G. 2002. Paragenesis of the Grasberg Cu-Au deposit, Irian Jaya, Indonesia: results from logging section 13, Mineralium Deposita, 37(1): 117–136.

    Google Scholar 

  • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geology Reviews, 40(1): 1–26.

    Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Heinrich D H, Turekian K K eds. Treatise on Geochemistry. Pergamon, Oxford. p.1–64.

    Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X Q, Shi X Y, Scott C, Anbar A D, Lyons T W, Jiang G Q. 2012. Ocean oxygenation in the wake of the Marinoan glaciation, Nature, 489(7417): 546–549.

    Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K eds. Treatise on Geochemistry. Elsevier, Amsterdam. p.669–701.

    Google Scholar 

  • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust, Science, 272(5270): 1 927–1 930.

    Google Scholar 

  • Schulz K J, DeYoungJr J H, Seal II R R, Bradley D C. 2017. Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. U.S. Geological Survey Professional Paper 1802. U.S. Geological Survey, Reston.

    Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, 452(7186): 456–459.

    Google Scholar 

  • Shannon R D, Prewitt C T. 1970. Revised values of effective ionic radii, Acta Crystallographica, 26(7): 1 046–1 048.

    Google Scholar 

  • Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon, Reviews in Mineralogy & Geochemistry, 75(1): 355–421.

    Google Scholar 

  • Sillitoe R H. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region, Australian Journal of Earth Sciences, 44(3): 373–388.

    Google Scholar 

  • Sillitoe R H. 2010. Porphyry copper systems, Economic Geology, 105(1): 3–41.

    Google Scholar 

  • Singer D A, Berger V I, Moring B C. 2008. Porphyry Copper Deposits of the World: Database and grAde and Tonnage Models, 2008 (version 1.0). U.S. Geological Survey Open-File Report 2008-1155. 45p, http://pubs.usgs.gov/of/2008/1155/. Accessed on 2013-04-27.

  • Song X Y, Zhong H, Tao Y, Zhou M F. 2005. Magmatic sulfide deposits in the Permian Emeishan Large Igneous Province, SW China. In: Mao J W, Bierlein F P, eds. Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg. p.465–467.

    Google Scholar 

  • Stein H J, Markey R J, Morgan J W, Du A, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China, Economic Geology, 92(7-8): 827–835.

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J eds. Magmatism in the Ocean Basins. Geological Society of London, London, United Kingdom. p.313–345.

    Google Scholar 

  • Sun W D, Arculus R J, Bennett V C, Eggins S M, Binns R A. 2003b. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea), Geology, 31(10): 845–848.

    Google Scholar 

  • Sun W D, Arculus R J, Kamenetsky V S, Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431(7011): 975–978.

    Google Scholar 

  • Sun W D, Bennett V C, Eggins S M, Arculus R J, Perfit M R. 2003c. Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results, Chemical Geology, 196(1–4): 259–281.

    Google Scholar 

  • Sun W D, Bennett V C, Eggins S M, Kamenetsky V S, Arculus R J. 2003a. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas, Nature, 422(6929): 294–297.

    Google Scholar 

  • Sun W D, Ding X, Ling M X, Zartman R E, Yang X Y. 2015a. Subduction and ore deposits. International Geology Review, 57(9–10): iii–vi, https://doi.org/10.1080/00206814.2015.1029543.

    Google Scholar 

  • Sun W D, Hawkesworth C J, Yao C, Zhang C C, Huang R F, Liu X, Sun X L, Ireland T, Song M S, Ling M X, Ding X, Zhang Z F, Fan W M, Wu Z Q. 2018a. Carbonated mantle domains at the base of the Earth’s upper mantle, Chemica Geology, 478: 69–75.

    Google Scholar 

  • Sun W D, Huang R F, Li H, Hu Y B, Zhang C C, Sun S J, Zhang L P, Ding X, Li C Y, Zartman R E, Ling M X. 2015b. Porphyry deposits and oxidized magmas, Ore Geology Reviews, 65: 97–131.

    Google Scholar 

  • Sun W D, Li C Y, Hao X L, Ling M X, Ireland T, Ding X, Fan W M. 2016. Oceanic anoxic events, subduction style and molybdenum mineralization, Solid Earth Sciences, 1(2): 64–73.

    Google Scholar 

  • Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R, Wei Q R, Fan W M. 2013. The link between reduced porphyry copper deposits and oxidized magmas, Geochimica et Cosmochimica Acta, 103: 263–275.

    Google Scholar 

  • Sun W D, Lin Q T, Zhang L P, Liao R Q, Li C Y. 2018b. The formation of the South China Sea resulted from the closure of the Neo-Tethys: a perspective from regional geology, Acta Petrologica Sinica, 34(12): 3 467–3 478. (in Chinese with English abstract)

    Google Scholar 

  • Sun W D, Ling M X, Chung S L, Ding X, Yang X Y, Liang H Y, Fan W M, Goldfarb R, Yin Q Z. 2012. Geochemical constraints on adakites of different origins and copper mineralization, Journal of Geology, 120(1): 105–120.

    Google Scholar 

  • Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y 2010. Ridge subduction and porphyry copper-gold mineralization: an overview. Science China-Earth Sciences, 53(4): 475–484.

    Google Scholar 

  • Sun W D, Teng F Z, Niu Y L, Tatsumi Y, Yang X Y, Ling M X. 2014. The subduction factory: geochemical perspectives, Geochimica et Cosmochimica Acta, 143: 1–7.

    Google Scholar 

  • Sun W D, Wang J T, Zhang L P, Zhang C C, Li H, Ling M X, Ding X, Li C Y, Liang H Y. 2017. The formation of porphyry copper deposits, Acta Geochimica, 36(1): 9–15.

    Google Scholar 

  • Sun W D, Zhang H, Ling M X, Ding X, Chung S L, Zhou J B, Yang X Y, Fan W M. 2011a. The genetic association of adakites and Cu-Au ore deposits, International Geology Review, 53(5–6): 691–703.

    Google Scholar 

  • Sun W D. 2003. The Subduction Factory, A Perspective from Rhenium and Trace Element Geochemistry of Oceanic Basalts and Eclogites. The Austrilian National University, Canberra. p.1–265.

    Google Scholar 

  • Sun X L, Sun W D, Hu Y B, Ding W, Ireland T, Zhan M Z, Liu J Q, Ling M X, Ding X, Zhang Z F, Fan W M. 2018c. Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge, Acta Geochimica, 37(3): 395–401.

    Google Scholar 

  • Sun X M, Xu L, Sun W D, Zhai W, Liang Y H, Tang Q, Liang J L, Zhang Z M, Shen K, Wang F Y, Ling M X, Zartman R E. 2011b. Channelized fluids in subducted continental crust: constraints from δD-δ18O of quartz and fluid inclusions in quartz veins from the Chinese Continental Scientific Drilling Project, International Geology Review, 53(13): 1 443–1 463.

    Google Scholar 

  • Thieblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: the adakite connection, Comptes Rendus de l Academie des Sciences Serie II Fascicule A-Sciences de la Terre et des Planetes, 325(2): 103–109.

    Google Scholar 

  • Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. 1999. Intrusion related gold deposits associated with tungsten-tin provinces, Mineralium Deposita, 34(4): 323–334.

    Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, Journal of Geophysica Research: Solid Earth, 116(B1): B01401, https://doi.org/10.1029/2010JB007922.

    Google Scholar 

  • van Keken P E, Syracuse E M, Hacker B H, Abers G A, Fischer K M, Kneller E A, Spiegelman M. 2009. Modeling the subduction factory: the ins and outs from a thermal and dynamical perspective, Geochimica et Cosmochimica Acta, 73: A1372.

    Google Scholar 

  • Wang C Y, Wei B, Zhou M F, Minh D H, Qi L. 2018. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ∼260 Ma Emeishan large igneous province, SW China and northern Vietnam, Journal of Asian Earth Sciences, 154: 162–186.

    Google Scholar 

  • Wang F Y, Ling M X, Ding X, Hu Y H, Zhou J B, Yang X Y, Liang H Y, Fan W M, Sun W D. 2011. Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate, International Geology Review, 53(5–6): 704–726.

    Google Scholar 

  • Wang S L, Li H, Shang L B, Bi X W, Wang X S, Fan W L. 2016. Copper partitioning between granitic silicate melt and coexisting aqueous fluid at 850°C and 100 MPa, Acta Geochimica, 35(4): 381–390.

    Google Scholar 

  • Wang X D, Ni P, Jiang S Y, Zhao K D, Wang T G. 2010. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: evidence from helium and argon isotopes, Chinese Science Bulletin, 55(7): 628–634.

    Google Scholar 

  • Wilkinson J J. 2013. Triggers for the formation of porphyry ore deposits in magmatic arcs, Nature Geoscience, 6(11): 917–925.

    Google Scholar 

  • Xia B, Chen G W, Wang H. 2003. Analysis of tectonic settings of global superlarge porphyry copper deposits, Science in China Series D: Earth Sciences, 46(S1): 110–122.

    Google Scholar 

  • Xiong X L, Rao B, Chen F R, Zhu J C, Zhao Z H. 2002a. Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions, Journal of Asian Earth Sciences, 21(2): 175–188.

    Google Scholar 

  • Xiong X L, Rao B, Zhu J C, Zhao Z H, Wang X J. 2002b. Fractional crystallization of a protolithionite granitic magma and the formation mechanism of albite granitic melt, Acta Petrologica Sinica, 18(2): 223–230. (in Chinese with English abstract)

    Google Scholar 

  • Xu Y G, Wang Y, Wei X, He B. 2013. Mantle plume-related mineralization and their principal controlling factors, Acta Petrologica Sinica, 29(10): 3 307–3 322. (in Chinese with English abstract)

    Google Scholar 

  • Xu Z Q, Wang R C, Zhao Z B, Fu X F. 2018. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China, Acta Geologica Sinica, 92(6): 1 091–1 106. (in Chinese with English abstract)

    Google Scholar 

  • Yang K H, Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system, Nature, 383(6599): 420–423.

    Google Scholar 

  • Yang S, Zhong H, Zhu W G, Hu W J, Bai Z J. 2017. Platinum-group element geochemistry of mafic rocks from the Dongchuan area, southwestern China, Acta Geochimica, 36(1): 52–65.

    Google Scholar 

  • Yao J M, Mathur R, Sun W D, Song W L, Chen H Y, Mutti L, Xiang X K, Luo X H. 2016. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field, Geochemistry, Geophysics, Geosystems, 17(5): 1 725–1 739.

    Google Scholar 

  • Zaw K, Peters S G, Cromie P, Burrett C, Hou Z Q. 2007. Nature, diversity of deposit types and metallogenic relations of South China, Ore Geology Reviews, 31(1–4): 3–47.

    Google Scholar 

  • Zhang C C, Sun W D, Wang J T, Zhang L P, Sun S J, Wu K. 2017c. Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China, Geochimica et Cosmochimica Acta, 206: 343–363.

    Google Scholar 

  • Zhang L P, Hu Y B, Liang J L, Ireland T, Chen Y L, Zhang R Q, Sun S J, Sun W D. 2017a. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications, Acta Geochimica, 36(2): 132–150.

    Google Scholar 

  • Zhang L P, Zhang R Q, Hu Y B, Liang J L, Ouyang Z X, He J J, Chen Y X, Guo J, Sun W D. 2017b. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: geochronological and geochemical perspectives, Lithos, 290–291: 253–268.

    Google Scholar 

  • Zhang L P, Zhang R Q, Wu K, Chen Y X, Li C Y, Hu Y B, He J J, Liang J L, Sun W D. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China: constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry, Ore Geology Reviews, 96: 115–129.

    Google Scholar 

  • Zhang R Q, Lu J J, Lehmann B, Li C Y, Li G L, Zhang L P, Guo J, Sun W D. 2017d. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China, Ore Geology Reviews, 82: 268–284.

    Google Scholar 

  • Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J G, Shi C, Wang J L. 2008. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China, Geochimica et Cosmochimica Acta, 72(13): 3 200–3 228.

    Google Scholar 

  • Zhao H J, Lu M J, Zhou S G, Ye J H, Chen X F, Zhang C, Guo W M, Huang F X, Yao C Y. 2017. A study of kwy metallogenetic zones and principal metallogeic regularities of iron ore resources in South America countries, Geology of China, 44(4): 690–706. (in Chinese with English abstract)

    Google Scholar 

  • Zheng Y C, Liu S A, Wu C D, Griffin W L, Li Z Q, Xu B, Yang Z M, Hou Z Q, Reilly S Y O. 2018. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting, Geology, 47(2): 135–138.

    Google Scholar 

  • Zheng Y F, Mao J W, Chen Y J, Sun W D, Ni P, Yang X Y 2019. Hydrothermal ore deposits in collisional orogens. Science Bulletin, 64(3): 205–212.

    Google Scholar 

  • Zhou M F, Chen W T, Wang C Y, Prevec S A, Liu P P, Howarth G H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China, Geoscience Frontiers, 4(5): 481–502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Sun.

Additional information

Supported by the National Key R&D Program of China (No. 2016YFC0600408)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liao, R., Zhang, L. et al. Plate subduction, oxygen fugacity, and mineralization. J. Ocean. Limnol. 38, 64–74 (2020). https://doi.org/10.1007/s00343-019-8339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8339-y

Keyword

Navigation